4 resultados para Abadía Méndez, Miguel, 1867-1947 - Presidente de Colombia 1926-1930

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous polymer membranes based on poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) copolymers, P(VDF-TrFE)/PEO, are prepared through the, from partial to total, elimination of PEO, leading to interconnected micropores in the polymer blends. Electrolyte uptake, thermal and mechanical properties depend on the amount of PEO present in the polymer blend. Further, the degree of crystallinity of PEO and the elastic modulus (E´) of the polymer blend decrease with increasing PEO removal. Electrical properties of the polymer blend membranes are influenced by the porosity and are dominated by diffusion. The temperature dependence of ionic conductivity follows the Arrhenius behavior. It is the highest for the membranes with a volume fraction of pores of 44% (i.e, 90% PEO removal), reaching a value of 0.54 mS.cm-1 at room temperature. Battery performance was determined by assembling Li/C-LiFePO4 swagelok cells. The polymer blends with 90% PEO removal exhibit rate (124 mAhg-1 at C/5 and 47 mAhg-1 at 2C) and cycling capabilities suitable for lithium ion battery applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium-ion battery cathodes have been fabricated by screen-printing through the development of CLiFePO4 inks. It is shown that shear thinning polymer solutions in N-methyl-2-pyrrolidone (NMP) with Newtonian viscosity above 0.4 Pa s are the best binders for formulating a cathode paste with satisfactory film forming properties. The paste shows an elasticity of the order of 500 Pa and, after shear yielding, shows an apparent viscosity of the order of 3 Pa s for shear rates corresponding to those used during screen-printing. The screen-printed cathode produced with a thickness of 26 mm shows a homogeneous distribution of the active material, conductive additive and polymer binder. The total resistance and diffusion coefficient of the cathode are 450 V and 2.5 10 16cm2 s 1, respectively. The developed cathodes show an initial discharge capacity of 48.2 mAh g 1 at 5C and a discharge value of 39.8 mAh g 1 after 50 cycles. The capacity retention of 83% represents 23% of the theoretical value (charge and/or discharge process in twenty minutes), demonstrating the good performance of the battery. Thus, the developed C-LiFePO4 based inks allow to fabricate screen-printed cathodes suitable for printed lithium-ion batteries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Comunicação Arte e Cultura