6 resultados para 12-methyl-Tetradecanoic acid
em Universidade do Minho
Resumo:
[Excerpt] Citric acid, an important and versatile organic acid extensively used in several industries, is originally produced by Aspergillus niger in submerged fermentation from molasses [1]. However, Yarrowia lipolytica have been studied and demonstrate a great potential as citric acid producer from several carbon sources [1–5] including crude glycerol, a low cost byproduct from the biodiesel industry [6]. The simultaneous production of the isomer isocitric acid is the major problem in using this yeast in the citric acid production. (...)
Resumo:
Tese de Doutoramento em Biologia de Plantas MAP - Bioplant
Resumo:
Context: Caffeic acid is described as antibacterial, but this bioactive molecule has some issues regarding solubility and stability to environmental stress. Thus, encapsulation devices are required. Objective: The aim of this work was to study the effect of the caffeic acid encapsulation by cyclodextrins on its antibacterial activity. Materials and methods: The interactions between the caffeic acid and three cyclodextrins (-cyclodextrin (CD), 2-hydroxypropyl--cyclodextrin (HPCD) and methyl--cyclodextrin were study. Results and discussion: The formation of an aqueous soluble inclusion complex was confirmed for CD and HPCD with a 1:1 stoichiometry. The CD/caffeic acid complex showed higher stability than HPCD/caffeic acid. Caffeic acid antibacterial activity was similar at pH 3 and pH 5 against the three bacteria (K. pneumoniae, S. epidermidis and S. aureus). Conclusions: The antibacterial activity of the inclusion complexes was described here for the first time and it was shown that the caffeic acid activity was remarkably enhanced by the cyclodextrins encapsulation.
Resumo:
Tese de Doutoramento em Ciências - Especialidade em Biologia
Resumo:
Curcuminoids are natural phenylpropanoids from plants that have been reported as potential cancer-fighting drugs. Nevertheless, these compounds present a poor bioavailability. Cellular uptake is low and curcuminoids are quickly metabolized once inside the cell, requiring repetitive oral doses to achieve an effective concentration for therapeutic activity [1]. Herein, we report an engineered artificial pathway for the production of curcuminoids in Escherichia coli. Arabidopsis thaliana 4-coumaroyl-CoA ligase and Curcuma longa diketide-CoA synthase (DCS) and curcumin synthase (CURS1) were used and 188 µM (70 mg/L) of curcumin was obtained from ferulic acid [2]. Bisdemethoxycurcumin and demethoxycurcumin were also produced, but in lower concentrations, by feeding p-coumaric acid or a mixture of p-coumaric acid and ferulic acid, respectively. Additionally, curcuminoids were produced from tyrosine through the caffeic acid pathway. To produce caffeic acid, tyrosine ammonia lyase from Rhodotorula glutinis and 4-coumarate 3-hydroxylase from Saccharothrix espanaensis were used [3]. Caffeoyl-CoA 3-O-methyl-transferase from Medicago sativa was used to convert caffeoyl-CoA to feruloyl-CoA. Using caffeic acid, p-coumaric acid or tyrosine as a substrate, 3.9, 0.3, and 0.2 µM of curcumin were produced, respectively. This is the first report on the use of DCS and CURS1 in vivo to produce curcuminoids. In addition, curcumin, the most studied curcuminoid for therapeutic purposes and considered in many studies as the most potent and active, was produced by feeding tyrosine using a pathway involving caffeic acid. We anticipate that by using a tyrosine overproducing strain, curcumin can be produced in E. coli without the need of adding expensive precursors to the medium, thus decreasing the production cost. Therefore, this alternative pathway represents a step forward in the heterologous production of curcumin using E. coli. Aiming at greater production titers and yields, the construction of this pathway in another model organism such as Saccharomyces cerevisiae is being considered.
Resumo:
[Excerpt] The incidence of fungal infections has greatly increased in patients under sustained immunosuppression with considerable risk associated. Difficulties regarding prompt diagnosis and the limited therapeutic options dictate high mortality rates. Available antifungals display substantial toxicity, a predictable consequence of the cellular structure of the organisms involved, reduced spectrum of activity, and drug interactions. Our group had previously identified three (Z)-5-amino-N'-aryl-1-methyl-1H-imidazole-4-carbohydrazonamides 1 [aryl= phenyl (1a), 4-fluorophenyl (1b), 3fluorophenyl (1c)] as potent antifungal agents.1 (...)