61 resultados para Material cost


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degree of Doctor of Philosophy of Structural/Civil Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Direito Judiciário (Direitos Processuais e Organização Judiciária)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Bioethanol from lignocellulosic materials (LCM), also called second generation bioethanol, is considered a promising alternative to first generation bioethanol. An efficient production process of lignocellulosic bioethanol involves an effective pretreatment of LCM to improve the accessibility of cellulose and thus enhance the enzymatic saccharification. One interesting approach is to use the whole slurry from treatment, since allows economical and industrial benefits: washing steps are avoided, water consumption is lower and the sugars from liquid phase can be used, increasing ethanol concentration [1]. However, during the pretreatment step some compounds (such as furans, phenolic compounds and weak acids) are produced. These compounds have an inhibitory effect on the microorganisms used for hydrolysate fermentation [2]. To overcome this, the use of a robust industrial strain together with agro-industrial by-products as nutritional supplementation was proposed to increase the ethanol productivities and yields. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Sociologia (área de especialização em Organizações e Trabalho)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient utilization of lignocellulosic biomass and the reduction of production cost are mandatory to attain a cost-effective lignocellulose-to-ethanol process. The selection of suitable pretreatment that allows an effective fractionation of biomass and the use of pretreated material at high-solid loadings on saccharification and fermentation (SSF) processes are considered promising strategies for that purpose. Eucalyptus globulus wood was fractionated by organosolv process at 200 C for 69 min using 56% of glycerol-water. A 99% of cellulose remained in pretreated biomass and 65% of lignin was solubilized. Precipitated lignin was characterized for chemical composition and thermal behavior, showing similar features to commercial lignin. In order to produce lignocellulosic ethanol at high-gravity, a full factory design was carried to assess the liquid to solid ratio (3e9 g/g) and enzyme to solid ratio (8e16 FPU/g) on SSF of delignified Eucalyptus. High ethanol concentration (94 g/L) corresponding to 77% of conversion at 16FPU/g and LSR ¼ 3 g/g using an industrial and thermotolerant Saccharomyces cerevisiae strain was successfully produced from pretreated biomass. Process integration of a suitable pretreatment, which allows for whole biomass valorization, with intensified saccharification-fermentation stages was shown to be feasible strategy for the co-production of high ethanol titers, oligosaccharides and lignin paving the way for cost-effective Eucalyptus biorefinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Industrial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2016.00390

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent decades, an increased interest has been evidenced in the research on multi-scale hierarchical modelling in the field of mechanics, and also in the field of wood products and timber engineering. One of the main motivations for hierar-chical modelling is to understand how properties, composition and structure at lower scale levels may influence and be used to predict the material properties on a macroscopic and structural engineering scale. This chapter presents the applicability of statistic and probabilistic methods, such as the Maximum Likelihood method and Bayesian methods, in the representation of timber’s mechanical properties and its inference accounting to prior information obtained in different importance scales. These methods allow to analyse distinct timber’s reference properties, such as density, bending stiffness and strength, and hierarchically consider information obtained through different non, semi or destructive tests. The basis and fundaments of the methods are described and also recommendations and limitations are discussed. The methods may be used in several contexts, however require an expert’s knowledge to assess the correct statistic fitting and define the correlation arrangement between properties.