55 resultados para Wall building technology
Resumo:
The increase in life expectancy with a decrease in birth rates is contributing to the ageing of the European population. This phenomenon, coupled with greater awareness of the quality of life, the need to have cost-efficient assistive care, the intention of people to live independently in their homes, and the technological developments in recent decades, have contributed to the emergence of the concept of ambient assisted living (AAL). AAL solutions aim to provide healthy and safe ageing to users through promoting independence in performing daily activities and interacting with technology, taking into consideration the deterioration of the users’ capabilities and the reduced costs of the solutions. In this chapter, AAL developments of monitoring activities of daily living (ADLs) and participation in a virtual community with the selected stakeholders are introduced, their roadmap with the expected technological developments are described, and the expected impact of these solutions on the end users of the developed solutions are discussed. This enables a real user guidance structure that represents the different needs and limitations of each user, presenting a highly structured project based on personas and possible solutions for them. The AAL4ALL Ambient Assisted Living for All (ALL4ALL) project is considered here as a case study to analyze and illustrate the ALL concepts discussed in this chapter.
Resumo:
The research of stereotactic apparatus to guide surgical devices began in 1908, yet a major part of today's stereotactic neurosurgeries still rely on stereotactic frames developed almost half a century ago. Robots excel at handling spatial information, and are, thus, obvious candidates in the guidance of instrumentation along precisely planned trajectories. In this review, we introduce the concept of stereotaxy and describe a standard stereotactic neurosurgery. Neurosurgeons' expectations and demands regarding the role of robots as assistive tools are also addressed. We list the most successful robotic systems developed specifically for or capable of executing stereotactic neurosurgery. A critical review is presented for each robotic system, emphasizing the differences between them and detailing positive features and drawbacks. An analysis of the listed robotic system features is also undertaken, in the context of robotic application in stereotactic neurosurgery. Finally, we discuss the current perspective, and future directions of a robotic technology in this field. All robotic systems follow a very similar and structured workflow despite the technical differences that set them apart. No system unequivocally stands out as an absolute best. The trend of technological progress is pointing toward the development of miniaturized cost-effective solutions with more intuitive interfaces.
Resumo:
The currently available clinical imaging methods do not provide highly detailed information about location and severity of axonal injury or the expected recovery time of patients with traumatic brain injury [1]. High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology [2]. The inexistence of a phantom able to mimic properly the human brain hinders the possibility of testing, calibrating and validating these medical imaging techniques. Most research done in this area fails in key points, such as the size limit reproduced of the brain fibers and the quick and easy reproducibility of phantoms [3]. For that reason, it is necessary to develop similar structures matching the micron scale of axon tubes. Flexible textiles can play an important role since they allow producing controlled packing densities and crossing structures that match closely the human crossing patterns of the brain. To build a brain phantom, several parameters must be taken into account in what concerns to the materials selection, like hydrophobicity, density and fiber diameter, since these factors influence directly the values of fractional anisotropy. Fiber cross-section shape is other important parameter. Earlier studies showed that synthetic fibrous materials are a good choice for building a brain phantom [4]. The present work is integrated in a broader project that aims to develop a brain phantom made by fibrous materials to validate and calibrate HDFT. Due to the similarity between thousands of hollow multifilaments in a fibrous arrangement, like a yarn, and the axons, low twist polypropylene multifilament yarns were selected for this development. In this sense, extruded hollow filaments were analysed in scanning electron microscope to characterize their main dimensions and shape. In order to approximate the dimensional scale to human axons, five types of polypropylene yarns with different linear density (denier) were used, aiming to understand the effect of linear density on the filament inner and outer areas. Moreover, in order to achieve the required dimensions, the polypropylene filaments cross-section was diminished in a drawing stage of a filament extrusion line. Subsequently, tensile tests were performed to characterize the mechanical behaviour of hollow filaments and to evaluate the differences between stretched and non-stretched filaments. In general, an increase of the linear density causes the increase in the size of the filament cross section. With the increase of structure orientation of filaments, induced by stretching, breaking tenacity increases and elongation at break decreases. The production of hollow fibers, with the required characteristics, is one of the key steps to create a brain phantom that properly mimics the human brain that may be used for the validation and calibration of HDFT, an imaging approach that is expected to contribute significantly to the areas of brain related research.
Resumo:
Dissertação de mestrado integrado em Arquitectura
Resumo:
Earth has been a traditional building material to construct houses in Africa. One of the most common techniques is the use of sun dried or kiln fired adobe bricks with mud mortar. Fired bricks are the main cause for deforestation in countries like Malawi. Although this technique is low-cost, the bricks vary largely in shape, strength and durability. This leads to weak houses which suffer considerable damage during floods and seismic events. One solution is the use of dry-stack masonry with stabilized interlocking compressed earth blocks (ICEB). This technology has the potential of substituting the current bricks by a more sustainable kind of block. This study was made in the context of the HiLoTec project, which focuses on houses in rural areas of developing countries. For this study, Malawi was chosen for a case study. This paper presents the experimental results of tests made with dry-stack ICEBs. Soil samples from Malawi were taken and studied. Since the experimental campaign could not be carried out in Malawi, a homogenization process of Portuguese soil was made to produce ICEBs at the University of Minho, Portugal. Then, the compression and tensile strength of the materials was determined via small cylinder samples. Subsequently, the compression and flexural strength of units were determined. Finally, tests to determine the compressive strength of both prisms and masonry wallets and to determine the initial shear strength of the dry interfaces were carried out. This work provides valuable data for low-cost eco-efficient housing
Resumo:
In this article, we develop a specification technique for building multiplicative time-varying GARCH models of Amado and Teräsvirta (2008, 2013). The variance is decomposed into an unconditional and a conditional component such that the unconditional variance component is allowed to evolve smoothly over time. This nonstationary component is defined as a linear combination of logistic transition functions with time as the transition variable. The appropriate number of transition functions is determined by a sequence of specification tests. For that purpose, a coherent modelling strategy based on statistical inference is presented. It is heavily dependent on Lagrange multiplier type misspecification tests. The tests are easily implemented as they are entirely based on auxiliary regressions. Finite-sample properties of the strategy and tests are examined by simulation. The modelling strategy is illustrated in practice with two real examples: an empirical application to daily exchange rate returns and another one to daily coffee futures returns.
Resumo:
Dissertação de mestrado em Plant Molecular Biology, Biotechnology and Bioentrepreneurship
Resumo:
Comunicação oral convidada - IL4
Resumo:
Due to communication and technology developments, residential consumers are enabled to participate in Demand Response Programs (DRPs), control their consumption and decrease their cost by using Household Energy Management (HEM) systems. On the other hand, capability of energy storage systems to improve the energy efficiency causes that employing Phase Change Materials (PCM) as thermal storage systems to be widely addressed in the building applications. In this paper, an operational model of HEM system considering the incorporation of more than one type of PCM in plastering mortars (hybrid PCM) is proposed not only to minimize the customerâ s cost in different DRPs but also to guaranty the habitantsâ  satisfaction. Moreover, the proposed model ensures the technical and economic limits of batteries and electrical appliances. Different case studies indicate that implementation of hybrid PCM in the buildings can meaningfully affect the operational pattern of HEM systems in different DRPs. The results reveal that the customerâ s electricity cost can be reduced up to 48% by utilizing the proposed model.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Tese de Doutoramento em Ciências da Educação (Especialidade de Tecnologia Educativa)
Resumo:
Doctoral Programme in Telecommunication - MAP-tele
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Objective To determine whether the use of 3-dimensional (3D) imaging translates into a better surgical performance of naïve urologic laparoscopic surgeons during pyeloplasty (PY) and partial nephrectomy (PN) procedures. Materials and Methods Eighteen surgeons without any previous laparoscopic experience were randomly assigned to perform PY and PN in a porcine model using initially 2-dimensional (2D) and 3D laparoscopy. A surgical performance score was rated by an "expert" tutor through a modified 5-item global rating scale contemplating operative field view, bimanual dexterity, efficiency, tissue handling, and autonomy. Overall surgical time, complications, subjective perception of participating surgeons, and inconveniences related to the 3D vision were recorded. Results No difference in terms if operative time was found between 2D or 3D laparoscopy for both the PY (P =.51) and the PN (P =.28) procedures. A better rate in terms of surgical performance score was noted by the tutors when the study participants were using 3D vs 2D, for both PY (3.6 [0.8] vs 3.0 [0.4]; P =.034) and PN (3.6 [0.51] vs 3.15 [0.63]; P =.001). No complications occurred in any of the procedures. Most (77.2%) of the participating na??ve laparoscopic surgeons had the perception that 3D laparoscopy was overall easier than 2D. Headache (18.1%), nausea (18.1%), and visual disturbance (18.1%) were the most common issues reported by the surgeons during 3D procedures. Conclusion Despite the absence of translation in a shorter operative time, the use of 3D technology seems to facilitate the surgical performance of naive surgeons during laparoscopic kidney procedures on a porcine model.
Resumo:
Dissertação de mestrado integrado in Civil Engineering