67 resultados para VUV EXCITATION PROPERTIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stents are rigid and perforated tubular structures, which are inserted into blood vessels in order to prevent or inhibit the constriction of blood flow, restoring the normal blood flow, when blood vessels are clogged, being used in 70% of angioplasties. These medical devices assume great importance in the treatment of cardiovascular diseases (CVD) which are the leading cause of death worldwide. In the European Union CVD account for 40% of deaths and assume an estimated annual cost of 196 billion euros[1]. Stents must possess certain requirements, in order to, adequately, perform its function, such as biocompatibility (so that its use does not c ause damage on the health of its user), mechanical strength, radiopacity (so that it is easy to view), longitudinal flexibility, ease of handling, corrosion resistance and having high strength and high radial expansion ability to recover. Stents can be made of different materials, but metals, particularly stainless steel, are the most common. However, metallic stents present several dRawbacks such as corrosion and restenosis, leading to health complications for the patient, or even death. In order to minimize these disadvantages, new materials, like fibrous materials, have been used [2]. Monofilaments present high potential for stents development because, in addition to its biocompatibility, these materials allow the application of various surface treatments, such as antibacterial coatings. Furthermore, monofilament exhibit excellent mechanical properties, like greater stiffness and good results when subjected to compression, tensile and bending forces, since these forces will be directly supported by the monofilament [3]. To minimize the reaction of the human body and Limit the adhesion of microorganisms to the stent surface, some coatings have been developed, including the use of novel metals with antimicrobial properties, like silver. The main objective of this study was the development of fibrous stents, incorporation of silver oxide nanocoating. For the development of the stent, polyester monofilaments with 0.27mm of diameter were used in braiding technology, with a mandrel diameter of 6mm and a braiding angle of 35⁰. The mechanical behaviour of the stent were evaluated by mechanical testing under longitudinal and radial compression, bending. The results of compressive strength tests are according with value from literature: 1.13 to 2.9 N for radial compression and 0. 16-5.28N to longitudinal compression. From literature is also possible to verify that stents must present 75% of unchanged diameter during the bending test and must possess a porosity between 70% and 80% [4]. The produced polyester stent presents values of 1.29N for radial compression, 0.23N for longitudinal compression, 80% of porosity and 85.5% of unchanged diameter, during bending tests. For the antibacterial functionalization, silver oxide nanocoatings were prepared, through reactive magnetron g, with an Ag target in an Ar +O2 atmosphere. In order to evaluate the nanostructure and morphology of the coatings, d ifferent technique s like X-ray diffraction (XRD), scanning electron microscopy (SEM) and and X- ray photoelectron spectroscopy (XPS were used. From the analyses of XRD it is possible to verify that the peaks corresponds to planes of Ag2 O and MATERIAIS 2015 Porto, 21-23 June, 2015 characterize a cubic phase. The presence of Ag2 O is corroborated by XPS spectrum, where it is possible to observe silver, not only, in oxide state, but a lso in mettalic state, and it is possible to verify the presence of silver clusters, confirmed by SEM analysis. Films’ roughness and topography, parameters influencing the wettability of the surface and microorganism adhesion, were measured by Atomic Force Microscopy (AFM), and it was observed that the roughness is very low (under 10 nm). Coatings’ hydrophobicity and surface tension parameters were determined by contact angle measurement, and it was verified the hydrophobic behavior of the coatings. For antibacterial tests were used Staphylococcus epidermidis strain (IE186) and Staphylococcus aureus(ATCC 6538), and halo inhibition zone tests were realized. Ag+release rates were studied by means of inductively coupled plasma mass spectrometry (ICP -MS). The obtained results suggest that silver oxide coatings do not modify significantly surface properties of the substrate, like hydrophobicity and roughness, and present antimicrobial properties for both bacteria used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, CdTe semiconductor quantum dots (QDs) have attracted great interest due to their unique properties [1]. Their dispersion into polymeric matrices would be very for several optoelectronics applications. Despite its importance, there has been relatively little work done on charge transport in the QD polymeric films [2], which is mainly affected by their structural and morphological properties. In the present work, polymer-quantum dot nanocomposites films based on optically transparent polymers in the visible spectral range and CdTe QDs with controlled particle size and emission wavelength, were prepared via solvent casting. Photoluminescent (PL) measurements indicate different emission intensity of the nanocomposites. A blue shift of the emission peak compared to that of QDs in solution occurred, which is attributed to the QDs environment changes. The morphological and structural properties of the CdTe nanocomposites were evaluated. Since better QDs dispersion was achieved, PMMA seemed to be the most promising matrix. Electrical properties measurements indicate an ohmic behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Informal caregivers provide a significant part of the total care needed by dependent older people poststroke. Although informal care is often the preferred option of those who provide and those who receive informal care, informal caregivers often report lack of preparation to take care of older dependent people. This article outlines the development and psychometric testing of informal caregivers’ skills when providing care to older people after a stroke – ECPICID-AVC. Design: Prospective psychometric instrument validation study. Methods: Eleven experts participated in a focus group in order to delineate, develop and validate the instrument. Data were gathered among adult informal caregivers (n = 186) living in the community in Northern Portugal from August 2013 to January 2014. Results: The 32-item scale describes several aspects of informal caregiver’s skills. The scale has eight factors: skill to feed/hydrate by nasogastric feeding, skill to assist the person in personal hygiene, skill to assist the person for transferring, skill to assist the person for positioning, skill to provide technical aids, skill to assist the person to use the toilet, skill to feed/hydrate and skill to provide technical aids for dressing/undressing. Analysis demonstrated adequate internal consistency (Cronbach’s alpha = 0.83) and good temporal stability 0.988 (0.984–0.991). Conclusion: The psychometric properties of the measurement tool showed acceptable results allowing its implementation in clinical practice by the nursing community staff for evaluating practical skills in informal caregivers when providing care to older stroke survivors living at home.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Promoting environmental and health education is crucial to allow students to make conscious decisions based on scientific criteria. The study is based on the outcomes of an Educational Project implemented with Portuguese students and consisted of several activities, exploring pre-existent Scientific Gardens at the School, aiming to investigate the antibacterial, antitumor and anti-inflammatory properties of plant extracts, with posterior incorporation in soaps and creams. A logo and a webpage were also created. The effectiveness of the project was assessed via the application of a questionnaire (pre- and post-test) and observations of the participants in terms of engagement and interaction with all individuals involved in the project. This project increased the knowledge about autochthonous plants and the potential medical properties of the corresponding plant extracts and increased the awareness about the correct design of scientific experiments and the importance of the use of experimental models of disease. The students regarded their experiences as exciting and valuable and believed that the project helped to improve their understanding and increase their interest in these subjects and in science in general. This study emphasizes the importance of raising students’ awareness on the valorization of autochthonous plants and exploitation of their medicinal properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free standing films of a genetically engineered silk-elastin-like protein (SELP) were prepared using water and formic acid as solvents. Exposure to methanol-saturated air promoted the formation of aggregated β-strands rendering aqueous insolubility and improved the mechanical properties leading to a 10-fold increase in strain-to-failure. The films were optically clear with resistivity values similar to natural rubber and thermally stable up to 180 °C. Addition of glycerol showed to enhance the flexibility of SELP/glycerol films by interacting with SELP molecules through hydrogen bonding, interpenetrating between the polymer chains and granting more conformational freedom. This detailed characterization provides cues for future and unique applications using SELP based biopolymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of the tensile constitutive behaviour of Fibre Reinforced Concrete (FRC) represents an important aspect of the design of structural elements using this material. Although an important step has been made with the introduction of guidance for the design with regular FRC in the recently published fib Model Code 2010, a better understanding of the behaviour of this material is still necessary, mainly for that with self-compacting properties. This work presents an experimental investigation employing Steel Fibre Self-Compacting Concrete (SFRSCC) to cast thin structural elements. A new test method is proposed for assessing the post-cracking behaviour and the results obtained with the proposed test method are compared with the ones resulted from the standard three-point bending tests (3PBT). Specimens extracted from a sandwich panel consisting of SFRSCC layers are also tested. The mechanical properties of SFRSCC are correlated to the fibre distribution by analysing the results obtained with the different tests. Finally, the stress-crack width constitutive law proposed by the fib Model Code 2010 is analysed in light of the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C2mim][CnSO3], [C2mim][CnSO4] and [C2mim][diCnPO4]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes (SPE) membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10−4 S cm−1 and a wide electrochemical window of ∼ 4.0 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CdS nanoparticles (NPs) were synthesized using colloidal methods and incorporated within a diureasil hybrid matrix. The surface capping of the CdS NPs by 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) organic ligands during the incorporation of the NPs within the hybrid matrix has been investigated. The matrix is based on poly(ethylene oxide)/poly(propylene oxide) chains grafted to a siliceous skeleton through urea bonds and was produced by sol–gel process. Both alkaline and acidic catalysis of the sol–gel reaction were used to evaluate the effect of each organic ligand on the optical properties of the CdS NPs. The hybrid materials were characterized by absorption, steady-state and time-resolved photoluminescence spectroscopy and High Resolution Transmission Electron Microscopy (HR-TEM). The preservation of the optical properties of the CdS NPs within the diureasil hybrids was dependent on the experimental conditions used. Both organic ligands (APTMS and MPTMS) demonstrated to be crucial in avoiding the increase of size distribution and clustering of the NPs within the hybrid matrix. The use of organic ligands was also shown to influence the level of interaction between the hybrid host and the CdS NPs. The CdS NPs showed large Stokes shifts and long average lifetimes, both in colloidal solution and in the xerogels, due to the origin of the PL emission in surface states. The CdS NPs capped with MPTMS have lower PL lifetimes compared to the other xerogel samples but still larger than the CdS NPs in the original colloidal solution. An increase in PL lifetimes of the NPs after their incorporation within the hybrid matrix is related to interaction between the NPs and the hybrid host matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopolymer-based materials have been of particular interest as alternatives do synthetic polymers due to their low toxicity, biodegradability and biocompatibility. Among them, chitosan is one of the most studied ones and has recently been investigated for the application as solid state polymer electrolytes. Furthermore, it can serve as a host for luminescent species such as rare earth ions, giving rise to materials with increased functionality, of particular interest for electrochemical devices. In this study, we investigate chitosan based luminescent materials doped wit Eu3+ and Li+ triflate salts from the structural, photophysical and conductivity points of view. Because the host presents a broad emission band in the blue to green, while Eu3+ emits in the red, fine tuning of emission colour and/or generation of white light is possible by optimizing composition and excitation scheme. Europium lifetimes (5D0) are in the range 270 – 350 µs and quantum yields are as high as 2%. Although Li+ does not interfere with the luminescent properties, it grants ion-conducting properties to the material suggesting that a combination of both properties could be further explored in multifunctional device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the first attempt of characterizing several physical, mechanical and chemical properties of Quiscal fibres, usually used by the native communities in Chile and on investigations concerning the influence of atmospheric dielectric barrier discharge (DBD) plasma treatment on various properties such as diameter and linear density, percent of impurity, moisture regain, chemical elements and groups, thermal degradation, surface morphology, among others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural Fiber Composites based on polypropylene have gained increasing interest over the past two decades, both in the scientific and industry communities. In this study, the mechanical properties of polypropylene (PP)/natural fiber composites were studied and compared with those of polypropylene reinforced by glass fiber. Flax and jute woven fabrics have been used. PP/glass fiber composites showed better performance in terms of tensile properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζτ(k) controlling the singularities for both the longitudinal  and transverse (τ = t) dynamical structure factors for the whole momentum range  , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to characterize sweet cherry regarding nutritional composition of the fruits, and individual phytochemicals and bioactive properties of fruits and stems. The chromatographic profiles in sugars, organic acids, fatty acids, tocopherols and phenolic compounds were established. All the preparations (extracts, infusions and decoctions) obtained using stems revealed higher antioxidant potential than the fruits extract, which is certainly related with its higher phenolic compounds (phenolic acids and flavonoids) concentration. The fruits extract was the only one showing antitumor potential, revealing selectivity against HCT-15 (colon carcinoma) (GI50~74 μg/mL). This could be related with anthocyanins that were only found in fruits and not in stems. None of the preparations have shown hepatotoxicity against normal primary cells. Overall, this study reports innovative results regarding chemical and bioactive properties of sweet cherry stems, and confirmed the nutritional and antioxidant characteristics of their fruits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mushrooms contain a multitude of biomolecules with nutritional and/or biological activity. Among the bioactive molecules, phenolic compounds and tocopherols are the most responsible for their antioxidant activity. In the present work, Boletus edulis, Lentinus edodes and Xerocomus badius, three edible mushroom species originated from Poland, were analyzed for their chemical composition and antioxidant activity. Carbohydrates were the most abundant macronutrients, followed by proteins and ash. Fructose, mannitol and trehalose were the prevalent sugars, but glucose was only found in B. edulis. Polyunsaturated fatty acids predominated over mono and saturated fatty acids. Palmitic, oleic and linoleic acids were abundant in the three samples. α- and β- Tocopherols were quantified in all the samples, but γ-tocopherol was only identified in X. badius. Oxalic and fumaric acids were quantified in the three samples; quinic acid was only present in L. edodes, and malic and citric acids were only found in X. badius. p-Hydroxybenzoic, protocatechuic and cinnamic acids were quantified in all the species, while p-coumaric acid was only found in B. edulis. This species and X. badius revealed the highest antioxidant properties, being B. edulis more effective in radicals scavenging activity and reducing power, and X. badius in lipid peroxidation inhibition, which is related with the highest amounts in phenolic compounds and tocopherols, respectively.