32 resultados para analytical parameters
Resumo:
In spite of all innovations in stent design, commonly used metallic stents present several problems such as corrosion, infection and restenosis, leading to health complications or even death of patients. In this context, the present paper reports a systematic investigation on designing and development of 100% fiber based stents, which can eliminate or minimize the problems with existing metallic stents. For this purpose, braided stents were produced by varying different materials, structural and process parameters such as mono-filament type and diameter, braiding angle and mandrel diameter. The influence of these design parameters on mechanical behavior as well as stent's porosity was thoroughly investigated, and suitable parameters were selected for developing a stentwith mechanical characteristics and porosity matching with the commercial stents. According to the experimental results, the best performance was achieved with a polyester stent designed with 0.27 mm monofilament diameter, braiding angle of 35° and mandrel diameter of 6 mm, providing similar properties to commercial Nitinol stents.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Influence of river ecological condition on changes in physico-chemical water parameters along rivers
Resumo:
Dissertação de mestrado em Ecology
Resumo:
Tantalum oxynitride thin films were produced by magnetron sputtering. The films were deposited usinga pure Ta target and a working atmosphere with a constant N2/O2ratio. The choice of this constant ratiolimits the study concerning the influence of each reactive gas, but allows a deeper understanding of theaspects related to the affinity of Ta to the non-metallic elements and it is economically advantageous.This work begins by analysing the data obtained directly from the film deposition stage, followed bythe analysis of the morphology, composition and structure. For a better understanding regarding theinfluence of the deposition parameters, the analyses are presented by using the following criterion: thefilms were divided into two sets, one of them produced with grounded substrate holder and the otherwith a polarization of −50 V. Each one of these sets was produced with different partial pressure of thereactive gases P(N2+ O2). All the films exhibited a O/N ratio higher than the N/O ratio in the depositionchamber atmosphere. In the case of the films produced with grounded substrate holder, a strong increaseof the O content is observed, associated to the strong decrease of the N content, when P(N2+ O2) is higherthan 0.13 Pa. The higher Ta affinity for O strongly influences the structural evolution of the films. Grazingincidence X-ray diffraction showed that the lower partial pressure films were crystalline, while X-rayreflectivity studies found out that the density of the films depended on the deposition conditions: thehigher the gas pressure, the lower the density. Firstly, a dominant -Ta structure is observed, for lowP(N2+ O2); secondly a fcc-Ta(N,O) structure, for intermediate P(N2+ O2); thirdly, the films are amorphousfor the highest partial pressures. The comparison of the characteristics of both sets of produced TaNxOyfilms are explained, with detail, in the text.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
The Symbolic Aggregate Approximation (iSAX) is widely used in time series data mining. Its popularity arises from the fact that it largely reduces time series size, it is symbolic, allows lower bounding and is space efficient. However, it requires setting two parameters: the symbolic length and alphabet size, which limits the applicability of the technique. The optimal parameter values are highly application dependent. Typically, they are either set to a fixed value or experimentally probed for the best configuration. In this work we propose an approach to automatically estimate iSAX’s parameters. The approach – AutoiSAX – not only discovers the best parameter setting for each time series in the database, but also finds the alphabet size for each iSAX symbol within the same word. It is based on simple and intuitive ideas from time series complexity and statistics. The technique can be smoothly embedded in existing data mining tasks as an efficient sub-routine. We analyze its impact in visualization interpretability, classification accuracy and motif mining. Our contribution aims to make iSAX a more general approach as it evolves towards a parameter-free method.
Resumo:
Objective: To evaluate the impact that the distribution of emphysema has on clinical and functional severity in patients with COPD. Methods: The distribution of the emphysema was analyzed in COPD patients, who were classified according to a 5-point visual classification system of lung CT findings. We assessed the influence of emphysema distribution type on the clinical and functional presentation of COPD. We also evaluated hypoxemia after the six-minute walk test (6MWT) and determined the six-minute walk distance (6MWD). Results: Eighty-six patients were included. The mean age was 65.2 ± 12.2 years, 91.9% were male, and all but one were smokers (mean smoking history, 62.7 ± 38.4 pack-years). The emphysema distribution was categorized as obviously upper lung-predominant (type 1), in 36.0% of the patients; slightly upper lung-predominant (type 2), in 25.6%; homogeneous between the upper and lower lung (type 3), in 16.3%; and slightly lower lung-predominant (type 4), in 22.1%. Type 2 emphysema distribution was associated with lower FEV1 , FVC, FEV1 /FVC ratio, and DLCO. In comparison with the type 1 patients, the type 4 patients were more likely to have an FEV1 < 65% of the predicted value (OR = 6.91, 95% CI: 1.43-33.45; p = 0.016), a 6MWD < 350 m (OR = 6.36, 95% CI: 1.26-32.18; p = 0.025), and post-6MWT hypoxemia (OR = 32.66, 95% CI: 3.26-326.84; p = 0.003). The type 3 patients had a higher RV/TLC ratio, although the difference was not significant. Conclusions: The severity of COPD appears to be greater in type 4 patients, and type 3 patients tend to have greater hyperinflation. The distribution of emphysema could have a major impact on functional parameters and should be considered in the evaluation of COPD patients.
Resumo:
This chapter deals with the different approaches for describing the rotational coordinates in spatial multibody systems. In this process, Euler angles and Bryant angles are briefly characterized. Particular emphasis is given to Euler parameters, which are utilized to describe the rotational coordinates in the present work. In addition, for all the types of coordinates considered in this chapter, a characterization of the transformation matrix is fully described.
Resumo:
Mycotoxins are toxic secondary metabolites produced by certain molds. Ochratoxin A (OTA) is one of the most relevant. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. OTA in wine is a risk to consumer health [1]. According to the Regulation No. 123/2005 of the European Commission, the maximum limit for OTA in wine is 2 µg/kg [2]. Then, it is important to control its occurrence. So, the aim of this work was to know the effect of different fining agents on OTA removal from white wine.
Resumo:
Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied. In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg L1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too. Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.
Resumo:
Dissertação de mestrado em Técnicas de Caracterização e Análise Química
Resumo:
Dissertação de mestrado em Técnicas de Caracterização e Análise Química
Resumo:
Dissertação de mestrado em Técnicas de Caraterização e Análise Química
Resumo:
Dissertação de mestrado em Técnicas de Caracterização e Análise Química