20 resultados para Molecular device


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blood typing is a crucial step before any blood transfusion. However, sometimes in emergency situations there is no time to determine the blood of the patient beforehand. In this cases, O negative blood type is administered, which has a lesser incompatibility risk to the patient. Nowadays, the “gold standard” blood typing devices cannot be used in emergency situations due to their high response time (about 30 minutes). This paper reports a blood typing device that determines the ABO and Rh human phenotypes. This device is fast (response time – 5 min), low-cost, and portable. Characteristics that make it suitable to be used in emergency situations, contributing to a higher efficiency and quality in healthcare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors acknowledge to Sofia Neves from ICVS for her help in the antibodies selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doctoral Dissertation for PhD degree in Chemical and Biological Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irgazyme, a commercial xylanase preparation from Trichoderma longibrachiatum, and xylanase D a purified enzyme from Trichoderma harzianum E58 were tested for their ability to enhance peroxide bleaching of Douglas-fir (Pseudotsuga menziesii) kraft pulp. A treatment with Irgazyme caused a much larger increase in brightness than did xylanase D. A double xylanase treatment with Irgazyme, before and after peroxide bleaching, resulted in the highest final brightness. Alkaline extraction increased the brightness of Douglas-fir brownstock. Treatment with Irgazyme released more lignin and carbohydrates than did xylanase D. The molecular mass of the lignin extracted from Irgazyme-treated brownstock was much larger than that from the control pulp. The lignin-like macromolecules directly solubilized from peroxide bleached pulps were substantially larger than those solubilized from the brownstock, irrespective of whether they were produced during xylanase or control treatments. This indicates that different kinds of materials were solubilized when a xylanase treatment was applied at different points in the bleaching sequence and raises concerns about the role of lignin entrapment in the mechanism by which xylanase enhances peroxide bleaching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biotecnologia)