25 resultados para Electoral Political Strategies
Resumo:
In the last few years, many reports have been describing promising biocompatible and biodegradable materials that can mimic in a certain extent the multidimensional hierarchical structure of bone, while are also capable of releasing bioactive agents or drugs in a controlled manner. Despite these great advances, new developments in the design and fabrication technologies are required to address the need to engineer suitable biomimetic materials in order tune cells functions, i.e. enhance cell-biomaterial interactions, and promote cell adhesion, proliferation, and differentiation ability. Scaffolds, hydrogels, fibres and composite materials are the most commonly used as biomimetics for bone tissue engineering. Dynamic systems such as bioreactors have also been attracting great deal of attention as it allows developing a wide range of novel in vitro strategies for the homogeneous coating of scaffolds and prosthesis with ceramics, and production of biomimetic constructs, prior its implantation in the body. Herein, it is overviewed the biomimetic strategies for bone tissue engineering, recent developments and future trends. Conventional and more recent processing methodologies are also described.
Resumo:
Tese de Doutoramento em Ciência Política e Relações Internacionais
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
In 2008, the XVII Portuguese Constitutional Government launched the ‘e.escolinha’ programme, within the Technological Plan for Education, which set out the distribution of a computer, called ‘Magalhães’, designed for chil-dren attending the 1st cycle of basic education. Suspended in 2011 by the XIX Government, this programme has allowed, however, almost 500 000 children to have access to a personal computer. It was expected that this political measure would “revolutionise” the national education system by bringing changes to the pedagogical practices of teachers and the learning processes of children and by achieving educational success, in general. Based on documental analysis and on a set of interviews with key decision-makers in conceiving, implementing and monitoring this governmental initiative, the fi rst part of this chapter presents and analyses the ‘e.escolinha’ initiative and the policies be-hind that governmental programme, seeking to disassemble those objectives and provide some insights into the relationship between discourses, rhetoric, and reality. After that, the chapter focuses on children’s uses and practices with the ‘Magalhães’ laptop, at school and at home. Based on the results of questionnaires fi lled in by approximately 1500 children from 32 First Cycle public schools of the municipality of Braga (north of Portugal) and also from questionnaires applied to their parents and teachers, this chapter intends to analyse the real impact of this initiative for children, family and school. It also seeks to discuss the contribution of this educational policy to children’s digital literacy and also to their own and their families’ social and digital inclusion. To understand if it represented an added value to teachers’ pedagogical practice is another of its aims. The fi ndings point out a major focus on technology and access rather than on uses and competences or even on social, educational and cultural change. In fact, a major conclusion is the existence of a strong gap between the policy and the practices, typical of a top-down policy design. This study is an integrant part of a research project titled “Navigating with ‘Magalhães’: Study on the Impact of Digital Media in Schoolchildren” conducted at the University of Minho, Portugal, financed by the Portuguese Foundation for Science and Technology [PTDC/CCI-COM/101381/2008] and co-funded by the European Regional Development Fund [COMPETE: FCOMP-01-0124-FEDER-009056].
Resumo:
Personalized tissue engineering and regenerative medicine (TERM) therapies propose patient-oriented effective solutions, considering individual needs. Cell-based therapies, for example, may benefit from cell sources that enable easier autologous set-ups or from recent developments on IPS cells technologies towards effective personalized therapeutics. Furthermore, the customization of scaffold materials to perfectly fit a patientâ s tissue defect through rapid prototyping technologies, also known as 3D printing, is now a reality. Nevertheless, the timing to expand cells or to obtain functional in vitrotissue substitutes prior to implantation prevents advancements towards routine use upon patient´s needs. Thus, personalized therapies also anticipate the importance of creating off-the-shelf solutions to enable immediately available tissue engineered products. This paper reviews the main recent developments and future challenges to enable personalized TERM approaches and to bring these technologies closer to clinical applications.
Resumo:
Dissertação de mestrado em Direito das Autarquias Locais
Resumo:
The occurrence of mycotoxigenic moulds such as Aspergillus, Penicillium and Fusarium in food and feed has an important impact on public health, by the appearance of acute and chronic mycotoxicoses in humans and animals, which is more severe in the developing countries due to lack of food security, poverty and malnutrition. This mould contamination also constitutes a major economic problem due the lost of crop production. A great variety of filamentous fungi is able to produce highly toxic secondary metabolites known as mycotoxins. Most of the mycotoxins are carcinogenic, mutagenic, neurotoxic and immunosuppressive, being ochratoxin A (OTA) one of the most important. OTA is toxic to animals and humans, mainly due to its nephrotoxic properties. Several approaches have been developed for decontamination of mycotoxins in foods, such as, prevention of contamination, biodegradation of mycotoxins-containing food and feed with microorganisms or enzymes and inhibition or absorption of mycotoxin content of consumed food into the digestive tract. Some group of Gram-positive bacteria named lactic acid bacteria (LAB) are able to release some molecules that can influence the mould growth, improving the shelf life of many fermented products and reducing health risks due to exposure to mycotoxins. Some LAB are capable of mycotoxin detoxification. Recently our group was the first to describe the ability of LAB strains to biodegrade OTA, more specifically, Pediococcus parvulus strains isolated from Douro wines. The pathway of this biodegradation was identified previously in other microorganisms. OTA can be degraded through the hydrolysis of the amide bond that links the L-β-phenylalanine molecule to the ochratoxin alpha (OTα) a non toxic compound. It is known that some peptidases from different origins can mediate the hydrolysis reaction like, carboxypeptidase A an enzyme from the bovine pancreas, a commercial lipase and several commercial proteases. So, we wanted to have a better understanding of this OTA degradation process when LAB are involved and identify which molecules where present in this process. For achieving our aim we used some bioinformatics tools (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV). We also designed specific primers and realized gene specific PCR. The template DNA used came from LAB strains samples of our previous work, and other DNA LAB strains isolated from elderberry fruit, silage, milk and sausages. Through the employment of bioinformatics tools it was possible to identify several proteins belonging to the carboxypeptidase family that participate in the process of OTA degradation, such as serine type D-Ala-D-Ala carboxypeptidase and membrane carboxypeptidase. In conclusions, this work has identified carboxypeptidase proteins being one of the molecules present in the OTA degradation process when LAB are involved.
Resumo:
Biofilms in food processing plants represent not only a problem to human health but also cause economic losses by technical failure in several systems. In fact, many foodborne outbreaks have been found to be associated with biofilms. Biofilms may be prevented by regular cleaning and disinfection, but this does not completely prevent biofilm formation. Besides, due to their diversity and to the development of specialized phenotypes, it is well known that biofilms are more resistant to cleaning and disinfection than planktonic microorganisms. In recent years, a considerable effort has been made in the prevention of microbial adhesion and biofilm formation on food processing surfaces and novel technologies have been introduced. In this context, this chapter discusses the main conventional and emergent strategies that have been employed to prevent bacterial adhesion to food processing surfaces and thus to efficiently maintain good hygiene throughout the food industries.
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Dissertação de mestrado em Bioengenharia