63 resultados para Engineering simulation
Resumo:
PhD thesis in Bioengineering
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
Resumo:
Dissertação de mestrado integrado em Mechanical Engineering
Resumo:
Dissertação de mestrado integrado em Civil Engineering
Resumo:
The thymus is the central organ responsible for the generation of T lymphocytes (1). Various diseases cause the thymus to produce in- sufficient T cells, which can lead to immune-suppression (2). Since T cells are essential for the protection against pathogens, it is crucial to promote de novo differentiation of T cells on diseased individuals. The available clinical solutions are: 1) one protocol involving the transplant of thymic stroma from unrelated children only applicable for athymic children (3); 2) for patients with severe peripheral T cell depletion and reduced thymic activity, the administration of stimu- lating molecules stimulating the activity of the endogenous thymus (4). A scaffold (CellFoam) was suggested to support thymus regen- eration in vivo (5), although this research was discontinued. Herein, we propose an innovative strategy to generate a bioartificial thymus. We use a polycaprolactone nanofiber mesh (PCL-NFM) seeded and cultured with human thymic epithelial cells (hTECs). The cells were obtained from infant thymus collected during pediatric cardio-tho- racic surgeries. We report new data on the isolation and characterization of those cells and their interaction with PCL-NFM, by expanding hTECs into relevant numbers and by optimizing cell seeding methods.
Resumo:
One of the biggest concerns in the Tissue Engineering field is the correct vascularization of engineered constructs. Strategies involving the use of endothelial cells are promising but adequate cell sourcing and neo-vessels stability are enduring challenges. In this work, we propose the hypoxic pre-conditioning of the stromal vascular fraction (SVF) of human adipose tissue to obtain highly angiogenic cell sheets (CS). For that, SVF was isolated after enzymatic dissociation of adipose tissue and cultured until CS formation in normoxic (pO2=21%) and hypoxic (pO2=5%) conditions for 5 and 8 days, in basal medium. Immunocytochemistry against CD31 and CD146 revealed the presence of highly branched capillary-like structures, which were far more complex for hypoxia. ELISA quantification showed increased VEGF and TIMP-1 secretion in hypoxia for 8 days of culture. In a Matrigel assay, the formation of capillary-like structures by endothelial cells was more prominent when cultured in conditioned medium recovered from the cultures in hypoxia. The same conditioned medium increased the migration of adipose stromal cells in a scratch assay, when compared with the medium from normoxia. Histological analysis after implantation of 8 days normoxic- and hypoxic-conditioned SVF CS in a hindlimb ischemia murine model showed improved formation of neo-blood vessels. Furthermore, Laser Doppler results demonstrated that the blood perfusion of the injured limb after 30 days was enhanced for the hypoxic CS group. Overall, these results suggest that SVF CS created under hypoxia can be used as functional vascularization units for tissue engineering and regenerative medicine.
Resumo:
Cell-based approaches in tissue engineering (TE) have been barely explored for the treatment of tendon and ligament (T/L) tissues, requiring the establishment of a widely available cell source with tenogenic potential. As T/L cells are scarce, stem cells may provide a good alternative. Understanding how resident cells behave in vitro, might be useful for recapitulating the tenogenic potential of stem cells for tendon TE applications. Therefore, we propose to isolate and characterize human T/L-derived cells (hTDCs and hLDCs) and compare their regenerative potential with stem cells from adipose tissue (hASCs) and amniotic fluid (hAFSCs)(1). T/L cells were isolated using different procedures and stem cells isolated as described elsewhere(1). Moreover, T/L cells were stimu- lated into the three mesenchymal lineages, using standard differentia- tion media. Cells were characterized for the typical stem cell markers as well as T/L related markers, namely tenascin-C, collagen I and III, decorin and scleraxis, using different complementary techniques such as real time RT-PCR, immunocytochemistry and flow cytometry. No differences were observed between T/L in gene expression and protein deposition. T/L cells were mostly positive for stem ness markers (CD73/CD90/CD105), and have the potential to differentiate towards osteogenesis, chondrogenesis and adipogenesis, demonstrated by the positive staining for AlizarinRed, SafraninO, ToluidineBlue and OilRed. hASCs and hAFSCs exhibit positive expression of all tenogenic mark- ers, although at lower levels than hTDCs and hLDCs. Nevertheless, stem cells availability is key factor in TE strategies, despite that it’s still required optimization to direct their tenogenic phenotype.
Resumo:
The usage of rebars in construction is the most common method for reinforcing plain concrete and thus bridging the tensile stresses along the concrete crack surfaces. Usually design codes for modelling the bond behaviour of rebars and concrete suggest a local bond stress – slip relationship that comprises distinct reinforcement mechanisms, such as adhesion, friction and mechanical anchorage. In this work, numerical simulations of pullout tests were performed using the finite element method framework. The interaction between rebar and concrete was modelled using cohesive elements. Distinct local bond laws were used and compared with ones proposed by the Model Code 2010. Finally an attempt was made to model the geometry of the rebar ribs in conjunction with a material damaged plasticity model for concrete.
Resumo:
Tendon tissue engineering (TE) requires tailoring scaffolds designs and properties to the anatomical and functional requirements of tendons located in different regions of the body. Cell sourcing is also of utmost importance as tendon cells are scarce. Recently, we have found that it is possible to direct the tenogenic differentiation of Amniotic fluid and Adipose tissue derived stem cells (hAFSCs and hASCs), and also that there are hASCs subpopulations that might be more prone to tenogenic differentiation. Nevertheless, biochemical stimulation may not be enough to develop functional TE substitutes for a tissue that is known to be highly dependent on mechanical loading.
Resumo:
The regeneration of soft biological tissues requires new substitutes that exhibit mechanical properties similar to the native tissue. Herein, thin saloplastic membranes with tunable physical properties are prepared by complexation of chitosan and alginate solutions containing different concentrations of sodium chloride. Polyelectrolyte complexes (PECs) are transferred to flat Petri dishes for compaction into membrane shapes by sedimentation and solvent evaporation. All membranes are resistant to degradation by lysozyme and are stable in solutions with pH values between 1 and 13. Immersing the different membranes in new doping solutions of increasing salt concentrations triggers the typical saloplastic behavior, with a high water absorption and decrease of the rigidity and ultimate tensile strength. The range of such variations is tuned by the sodium chloride amount used in the synthesis: high salt concentrations increase water uptake and tensile moduli, while decreasing the ultimate strength. Cellular assays demonstrate high proliferation rates and viability of L929 fibroblasts seeded onto the most rigid membranes. The results validate the use of saloplastic membranes as soft tissue substitutes for future biomedical applications.
Resumo:
The moisture content in concrete structures has an important influence in their behavior and performance. Several vali-dated numerical approaches adopt the governing equation for relative humidity fields proposed in Model Code 1990/2010. Nevertheless there is no integrative study which addresses the choice of parameters for the simulation of the humidity diffusion phenomenon, particularly in concern to the range of parameters forwarded by Model Code 1990/2010. A software based on a Finite Difference Method Algorithm (1D and axisymmetric cases) is used to perform sensitivity analyses on the main parameters in a normal strength concrete. Then, based on the conclusions of the sensi-tivity analyses, experimental results from nine different concrete compositions are analyzed. The software is used to identify the main material parameters that better fit the experimental data. In general, the model was able to satisfactory fit the experimental results and new correlations were proposed, particularly focusing on the boundary transfer coeffi-cient.
Resumo:
This paper presents the numerical simulations of the punching behaviour of centrally loaded steel fibre reinforced self-compacting concrete (SFRSCC) flat slabs. Eight half scaled slabs reinforced with different content of hooked-end steel fibres (0, 60, 75 and 90 kg/m3) and concrete strengths of 50 and 70 MPa were tested and numerically modelled. Moreover, a total of 54 three-point bending tests were carried out to assess the post-cracking flexural tensile strength. All the slabs had a relatively high conventional flexural reinforcement in order to promote the occurrence of punching failure mode. Neither of the slabs had any type of specific shear reinforcement rather than the contribution of the steel fibres. The numerical simulations were performed according to the Reissner-Mindlin theory under the finite element method framework. Regarding the classic formulation of the Reissner-Mindlin theory, in order to simulate the progressive damage induced by cracking, the shell element is discretized into layers, being assumed a plane stress state in each layer. The numerical results are, then, compared with the experimental ones and it is possible to notice that they accurately predict the experimental force-deflection relationship. The type of failure observed experimentally was also predicted in the numerical simulations.
Resumo:
This paper presents a framework of competences developed for Industrial Engineering and Management that can be used as a tool for curriculum analysis and design, including the teaching and learning processes as well as the alignment of the curriculum with the professional profile. The framework was applied to the Industrial Engineering and Management program at University of Minho (UMinho), Portugal, and it provides an overview of the connection between IEM knowledge areas and the competences defined in its curriculum. The framework of competences was developed through a process of analysis using a combination of methods and sources for data collection. The framework was developed according to four main steps: 1) characterization of IEM knowledge areas; 2) definition of IEM competences; 3) survey; 4) application of the framework at the IEM curriculum. The findings showed that the framework is useful to build an integrated vision of the curriculum. The most visible aspect in the learning outcomes of IEM program is the lack of balance between technical and transversal competences. There was not almost any reference to the transversal competences and it is fundamentally concentrated on Project-Based Learning courses. The framework presented in this paper provides a contribution to the definition of IEM professional profile through a set of competences which need to be explored further. In addition, it may be a relevant tool for IEM curriculum analysis and a contribution for bridging the gap between universities and companies.
Resumo:
Human activity is very dynamic and subtle, and most physical environments are also highly dynamic and support a vast range of social practices that do not map directly into any immediate ubiquitous computing functionally. Identifying what is valuable to people is very hard and obviously leads to great uncertainty regarding the type of support needed and the type of resources needed to create such support. We have addressed the issues of system development through the adoption of a Crowdsourced software development model [13]. We have designed and developed Anywhere places, an open and flexible system support infrastructure for Ubiquitous Computing that is based on a balanced combination between global services and applications and situated devices. Evaluation, however, is still an open problem. The characteristics of ubiquitous computing environments make their evaluation very complex: there are no globally accepted metrics and it is very difficult to evaluate large-scale and long-term environments in real contexts. In this paper, we describe a first proposal of an hybrid 3D simulated prototype of Anywhere places that combines simulated and real components to generate a mixed reality which can be used to assess the envisaged ubiquitous computing environments [17].