3 resultados para Shallow-water carbonates
em Institutional Repository of Leibniz University Hannover
Resumo:
During the Sedimentation of the platform carbonate deposits of the Korallenoolith Formation (middle Oxfordian to early Kimmeridgian) small buildups ofcorals formed in the Lower Saxony Basin. These bioconstructions are restricted to particular horizons (Untere Korallenbank,ßorigenuna-Bank Member etc.) and represent patch reefs and biostromes. In this study, the development of facies, fossil assemblages, spatial distribution of fossils, and reefs of the ßorigenuna-Bank Member (upper Middle Oxfordian) in the Süntel Mts and the eastern Wesergebirge Mts is described; the formation of reefs is discussed in detail. Twelve facies types are described and interpreted. They vary between high-energy deposits as well winnowed oolites and quiet-water lagoonal mudstones. Owing to the significance of biota, micro- and macrofossils are systematically described. The reefs are preserved in growth position, are characterized by numerous corresponding features and belong to a certain reef type. According to their size, shape and framework, they represent patch reefs, coral knobs (sensu James, 1983), coral thrombolite reefs (sensu Leinfelder et al., 1994) or “Klein- and Mitteldickichte” (sensu Laternser, 2001). Their growth fabric corresponds to the superstratal (dense) pillarstone (sensu Insalaco, 1998). As the top of the ßorigenuna-Bank displays an erosional unconformity (so-called Hauptdiskontinuität), the top of the reefs are erosionally capped. Their maximum height amounts to at least the maximum thickness of the ßorigenuna-Bank which does not exceed 4 metres. The diversity of coral fauna of the reefs is relatively low; a total of 13 species is recorded. The coral community is over- whelmingly dominated by the thin-branched ramose Thamnasteria dendroidea (Lamouroux) that forms aggregations of colonies (77?. dendroidea thickets). Leafy to platy Fungiastrea arachnoides (Parkinson) and Thamnasteria concinna (Goldfuss) occur subordinately, other species are only of minor importance. In a few cases, the reef-core consisting of Th. dendroidea thickets is laterally encrusted by platy F. arachnoides and Th. concinna colonies, and microbial carbonates. This zonation reflects probably a succession of different reef builders as a result of changing environmental conditions (allogenic succession). Moreover, some reefs are overlain by a biostrome made of large Solenopora jurassica nodules passing laterally in a nerinean bed. Mikrobial carbonates promoted reef growth and favoured the preservation of reef organismn in their growth position or in situ. They exhibit a platy, dendroid, or reticulate growth form or occur as downward-facing hemispheroids. According to their microstructure, they consist of a peloidal, clotted, or unstructured fabric (predominately layered and poorly structured thrombolite as well as clotted leiolite) (sensu Schmid, 1996). Abundant endo- and epibiontic organisms (bivalves, gastropods, echinoids, asteroids, ophiuroids, crabs etc) are linked to the reefs. With regard to their guild structure, the reefs represent occurrences at which only a few coral species serve as builder. Moreover, microbial carbonates contribute to both building and binding of the reefs. Additional binder as well as baffler are present, but not abundant. According to the species diversity, the dweller guild comprises by far the highest number of invertebrate taxa. The destroyer guild chiefly encompasses bivalves. The composition of the reef community was influenced by the habitat structure of the Th. dendroidea thickets. Owing to the increase in encrusting organisms and other inhabitants of the thickets, the locational factors changed, since light intensity and hydrodynamic energy level and combined parameters as oxygen supply declined in the crowded habitat. Therefore a characteristic succession of organisms is developed that depends on and responds to changing environmental conditions („community replacement sequence“). The succession allows the differentiation of different stages. It started after the cessation of the polyps with boring organisms and photoautotrophic micro-encrusters (calcareous algae, Lithocodium aggregatum). Following the death of these pioneer organisms, encrusting and adherent organisms (serpulids, „Terebella“ species, bryozoans, foraminifers, thecideidinids, sklerospongid and pharetronid sponges, terebratulids), small mobile organisms (limpets), and microbial induced carbonates developed. The final stage in the community replacement sequence gave rise to small cryptic habitats and organisms that belong to these caves (cryptobionts, coelobites). The habitat conditions especially favoured small non-rigid demosponges (“soft sponges”) that tolerate reduced water circulation. Reef rubble is negligible, so that the reefs are bordered by fossiliferous micritic limestone passing laterally in micritic limestone. Approximately 10% of the study area (outcropping florigemma-Bank) corresponds to reefal deposits whereas the remaining 90% encompass lagoonal inter-reefal deposits. The reef development is a good example for the interaction between reef growth, facies development and sea-level changes. It was initiated by a sea-level rise (transgression) and corresponding decrease in the hydrodynamic energy level. Colonization and reef growth took place on a coarse-grained Substrate composed of oncoids, larger foraminifers and bioclasts. Reef growth took place in a calm marine lagoonal setting. Increasing abundance of spherical coral morphs towards the Northeast (section Kessiehausen, northwestem Süntel Mts) reflects higher turbidity and a facies transition to coral occurrences of the ßorigenuna-Bank Member in the adjacent Deister Mts. The reef growth was neither influenced by stonns nor by input of siliciclastic deposits, and took place in short time - probably in only a thousand years under most probably mesotrophic conditions. The mass appearance of solenoporids and nerineids in the upper part of the ßorigenuna-Bank Member point to enhanced nutrient level as a result of regression. In addition, this scenario of fluctuations in nutrient availability seems to be responsible for the cessation of reef corals. The sea level fall reached its climax in the subaerial exposure and palaeokarst development of the florigemma-Bank. The reef building corals are typical pioneer species. The blade-like, flattened F. amchnoides colonies are characterized by their light porous calcium carbonate skeleton, which is a distinct advantage in soft bottom environment. Thus, they settled on soft bottom exposing the large parts of its surface to the incoming light. On the other hand, in response to their light requirements they were also able to settle shaded canopy structures or reef caves. Th. dendroidea is an opportunistic coral species in very shallow, well illuminated marine environment. Their thin and densely spaced branches led to a very high surface/volume ratio of the colonies that were capable to exploit incoming light due to their small thamasterioid calices characterized by “highly integrated polyps”. In addition, sideward coalescence of branches during colony growth led to a wave-resistant framework and favoured the authochthonous preservation of the reefs. Asexual reproduction by fragmented colonies promoted reef development as Th. dendroidea thickets laterally extend over the sea floor or new reefs have developed from broken fragments of parent colonies. Similar build ups with Th. dendroidea as a dominant or frequent reef building coral species are known from the Paris Basin and elsewhere from the Lower Saxony Basin (Kleiner Deister Mts). These buildups developed in well-illuminated shallow water and encompass coral reefs or coral thrombolite reefs. Intra- and inter-reef deposits vary between well-winnowed reef debris limestone and mudstones representing considerably calmer conditions. Solenoporid, nerineids and diceratides belong to the characteristic fossils of these occurrences. However, diceratides are missing in theflorigemma-Bank Member. Th. dendroidea differs in its colonization of low- to high-energy environment from recent ramose scleractinian corals (e.g., Acropora and Porites sp.). The latter are restricted to agitated water habitats creating coral thickets and carpets. According to the morphologic plasticity of Th. dendroidea, thick-branched colonies developed in a milieu of high water energy, whereas fragile, wide- and thin-branched colonies prevail in low-energy settings. Due to its relatively rapid growth, Th. dendroidea was able to keep pace with increased Sedimentation rates. 68 benthonic foraminiferan species/taxa have been recognized in thin sections. Agglutinated foraminifers (textulariids) predominate when compared with rotaliids and milioliids. Numerous species are restricted to a certain facies type or occur in higher population densities, in particular Everticyclammina sp., a larger agglutinated foraminifer that occurs in rock building amounts. Among the 25 reef dwelling foraminiferal species, a few were so far only known from Late Jurassic sponge reefs. Another striking feature is the frequency of adherent foraminiferal species. Fauna and flora, in particular dasycladaleans and agglutinated foraminifers, document palaeobiogeographic relationships to the Tethys and point to (sub)tropical conditions. Moreover, in Germany this foraminiferan assemblage is yet uncompared. In Southern Germany similar tethyan type assemblages are not present in strata as young as Middle Tithonian.
Resumo:
3400 pyritized internal moulds of Upper Devonian, Triassic, Jurassic and Lower Cretaceous ammonoids show various soft tissue attachment structures. They are preserved as regularly distributed black patterns on the moulds. All structures can be interpreted as attachment areas of muscles, ligaments and intracameral membranes. Paired structures are developed along the umbilicus and on the flanks of the moulds, unpaired ones appear on the middle of their dorsal and ventral sides. Strong lateral muscles cause paired twin lines on the flanks of the phragmocone and of the body chamber. A ventral muscle is deduced from small rounded or crescent shaped spots in front of each septum on the ventral side. These spots are often connected, forming a band-like structure. Broad dark external bands on the ventral side of the phragmocone, ventral preseptal areas in the posterior part of the living chamber, small twin lines or oval shaped areas on the ventral side of the living chamber represent paired or unpaired attachment areas of the hyponome muscle. A middorsal muscle is documented by small roughened areas in front of each dorsal lobe. Dark spots along the umbilicus, often connected and thus forming a band-like structure (tracking band), are remains of a pair of small dorsolateral muscles at the posterior end of the soft body. Dark bands, lines and rows of small crescent shaped structures behind the tips of sutural lobes are due to spotlike fixation places of the posterior part of the mantle and their translocation before subsequent septal secretion. Devonian goniatites had a paired system of lateral and ventrolateral muscles preserved on the moulds as black or incised lines on the flanks of the living chamber and as dark preseptal areas, ventrally indented. These structures represent the attachment areas of paired lateral cephalic and paired ventral hyponome retractors. Fine black lines on the phragmocone situated parallel to the sutures (pseudosutures) represent a rhythmical secretion of camera! membranes during softbody translocation. Goniatites had a paired system of lateral and ventrolateral muscles, whilst Neoammonoids have a paired lateral and dorsolateral system, and, additionally, an unpaired system on the ventral and on the dorsal side. Mesoammonoids show only a paired lateral and an unpaired dorsal one. Fine black lines situated parallel to the saddles and behind the lobes of the suture line can be interpreted as structures left during softbody translocation and a temporary attachment of rhythmical secreted cameral membranes. Cameral membranes had supported the efficiency of the phragmocone. Only some of the observed structures are also present in recent Nautilus. Differences in the form and position of attachment sites between ammonoids and recent Nautilus indicate different soft body organizations between ammonoids and nautiloids. The attachment structures of goniatites especially of tornoceratids can be compared with those of Nautilus which indicates Richter - Gewebeansatz-Strukturen bei Ammonoideen 3 a comparable mode of life. Differences in the form and position of attachment structures between goniatites and ammonites may indicate an increasing differentiation of the muscular system in the phylogeny of this group. Different soft body organization may depend on shell morphology and on a different mode of life. On the modification or reduction of distinct muscle systems ammonoids can be assigned to different ecotypes. Based on shell morphology and the attachment areas of cephalic and hyponome retractor muscles two groups can be subdivided: - Depressed, evolute morphotypes with longidome body-chambers show only small ventral hyponome retractor muscles. Lateral cephalic retractors are not developed. These morphotypes are adapted to a demersal mode of life. Without strong cephalic retractor muscles no efficient jet propulsion can be produced. These groups represent vertical migrants with efficient phragmocone properties (multilobate sutures, cameral membranes, narrow septal spacing). - Compressed, involute moiphotypes with brevidome body-chambers show strong cephalic and hyponome retractor muscles and represent a group of active swimmers. These morphotypes were able to live at different depths, in the free water column or/and near the seafloor. They are not confined only to one habitat. Most of the examined genera and species belong to this group. Changes of the attachment structures in the course of ontogeny confirm that juveniles of Amaltheus and Quenstedtoceras lived as passive planche drifters in upper and intermediate parts of the free water column after hatching. At the end of the juvenile stage with a shell diameter of 0,3 - 0,5 cm cephalic retractor muscles developed. With the beginning of an active swimming mode of life (neanic stage) the subadult animals left the free water column and moved into shallow water habitats. Fuciniceras showed no marked changes in the attachment structures during ontogeny. This indicates that there occur no differences in the mode of life between juvenile and adult growth stages. Based on attachment structures and shell morphology of Devonian goniatites their relation to the systematic position permits statements about probable phylogenetic relationships between the Cheiloceratidae and Tornoceratidae. In some cases attachment structures of ammonites permit statements about phylogenetic relationships on family and genus level.
Resumo:
The basal bed of the Natural Monument Münchehagen, called "Sohlbank", is composed of a quartzitic sandstone. The bed is characterized by wave ripple bedding, which is altered by biotrubation. Ist surface cuts erosively older, thin sandstone layers typically covered by riplle marks on their upper bedding plane. All ripple marks are oscillation ripples which are partially modified by retreating water. Sedimentary channel fillings cut into the “Sohlbank“. A highly diverse ichnofauna is described. It comprises elements of a Cruziana ichnocenosis in addition to some traces of a Skolithos ichnocenosis. The sedimentary and biogenic structures suggest a low energy, shallow-water depositional environment.