15 resultados para time of flight

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of the rise time calculation of a SAW resonator. The total rise time is given by rise time = [(rise time of cavity)2 + (rise time of reflectors)2 + (rise time of IDT) 2 ]. 1/2 These rise times are calculated in terms of the effective length of the cavity , the characteristics of the reflector, and the number of finger pairs in the IDT. The rise time of a 38 MHz one-port resonator on Y-Z LiNb03 calculated using this approach is found to be in good agreement with experimental results .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experimental results of delay time of a vacuum gap triggered by an exploding wire plasma have been reported. It consists of explosion delay time and propagation delay time. The explosion delay time has been found to be dependent on the parameters of the exploding wire and the exploding wire circuit and is independent of vacuum gap configuration. The propagation delay time depends on the properties of the exploding wire plasma and vacuum gap parameters such as the number of injection slots, gap spacing, gap polarity, etc. In the absence of prebreakdown current in the vacuum gap, the breakdown can be initiated only after the plasma completely bridges the gap spacing. Under this specific condition, it has been shown that the delay time data can be used to calculate the plasma velocity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship for the relaxation time(s) of a chemical reaction in terms of concentrations and rate constants has been derived from the network thermodynamic approach developed by Oster, Perelson, and Katchalsky.Generally, it is necessary to draw the bond graph and the “network analogue” of the reaction scheme, followed by loop or nodal analysis of the network and finally solving of the resulting differential equations. In the case of single-step reactions, however, it is possible to obtain an expression for the relaxation time. This approach is simpler and elegant and has certain advantages over the usual kinetic method. The method has been illustrated by taking different reaction schemes as examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: A number of proteome studies have been performed recently to identify pheromone-related protein expression and their molecular function using genetically modified rodents' urine. However, no such studies have used Indian commensal rodents; interestingly, in a previous investigation, we confirmed the presence of volatile molecules in commensal rodents urine and these molecules seem to be actively involved in pheromonal communication. Therefore, the present study aims to identify the major urinary protein [MUP] present in commensal rat urine, which will help us to understand the protein's expression pattern and intrinsic properties among the rodents globally. Experimental Design: Initially, the total urinary proteins were separated by 1-D and 2-D electrophoresis and then subsequently analyzed by Matrix Assisted Laser Desorption Ionization-Time of Flight and Mass Spectrometer (MALDI-TOF/MS). Furthermore, they were then fragmented with the aid of a Tandem Mass Spectrometer (TOF/TOF) and the identified sequences aligned and confirmed using similarity with the deduced primary structures of members of the lipocalin superfamily.Results: The SDS-PAGE protein profiles showed distinct proteins with molecular masses of 15, 22.4, 25, 28, 42, 50, 55, 68, and 91 kDa. Of these proteins, the 22.4 kDa protein was considered to be target candidate. When 2D electrophoresis was carried out, about similar to 50 spots were detected with different masses and various pI ranges. The 22.4 kDa protein was found to have a pI of about 4.9. This 22.4 kDa protein spot was digested and subjected to mass spectrometry; it was identified as rat MUP. The fragmented peptides from the rat MUP at 935, 1026, 1192, and 1303 m/z were further fragmented with the aid of MS/MS and generated de novo sequence and this confirmed this protein to be the MUP present in the urine of commensal rats.Conclusion: The present investigation confirms the presence of MUP with a molecular mass of 22.4 kDa in the urine of commensal rats. This protein may be involved in the binding of volatile molecules and opens up a discussion about how volatile and non-volatile molecules in the commensal rats' urine may contribute chemo-communication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO) prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS).Methodology/Principal Findings: Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF) mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more.Conclusions/Significance: Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a glimpse into the biology of this neglected disease, our study is the first step towards identification of diagnostic biomarkers, novel drug targets as well as potential vaccine candidates to fight against T. evansi infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An AB(2) monomer, 1-(2-hydroxyethoxy)-3,5-bis-(methoxymethyl)-2,4,6-trimethylbenzene, was synthesized from mesitol and melt-polycondensed in the presence of an acid catalyst via a transetherification process at 145-150 degreesC to yield a soluble, moderately high molecular weight hyperbranched polyether. The degree of branching in the polymer was calculated to be 0.78 by a comparison of its NMR spectrum with that of an appropriately designed model compound. The weight-average molecular weight of the hyperbranched polymer was determined to be 64,600 (weight-average molecular weight/number-average molecular weight = 5.2) by size exclusion chromatography (SEC) in CHCl3, with polystyrene standards. The origin of the broad molecular weight distribution, which could either be intrinsic to such hyperbranched structures or be due to structural heterogeneity, was further probed by the fractionation of the samples by SEC and by the subjection of each fraction to matrix-assisted laser desorption/ionization time-of-flight mass spectral analysis. The mass spectral analysis suggested the presence of two primary types of species: one corresponding to the simple branched structure and the other to macrocyclics. Interestingly, from the relative intensities of the two peaks, it was apparent that cyclization became favorable at higher conversions in the melt transetherification process. (C) 2002 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Staphylococcus aureus agr quorum-sensing system plays a major role in the transition from the persistent to the virulent phenotype. S. aureus agr type I to IV strains are characterized by mutations in the sensor domain of the histidine kinase AgrC and differences in the sequences of the secreted autoinducing peptides (AIP). Here we demonstrate that interactions between the cytosolic domain of AgrC (AgrC(Cyto)) and the response regulator domain of AgrA (AgrA(RR)) dictate the spontaneity of the cellular response to AIP stimuli. The crystal structure of AgrC(Cyto) provided a basis for a mechanistic model of AgrC-AgrA interactions. This model enabled an analysis of the biochemical and biophysical parameters of AgrC-AgrA interactions in the context of the conformational features of the AgrC-AgrA complex. This analysis revealed distinct sequence and conformational features that determine the affinity, specificity, and kinetics of the phosphotransfer reaction. This step, which governs the response time for transcriptional reengineering triggered by an AIP stimulus, is independent of the agr type and similar for agonist and antagonist stimuli. These experimental data could serve as a basis on which to validate simulations of the quorum-sensing response and for strategies that employ the agr quorum-sensing system to combat biofilm formation in S. aureus infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study examines an improved detoxification and rapid biological degradation of toxic pollutant acrylamide using a bacterium. The acrylamide degrading bacterium was isolated from the soil followed by its screening to know the acrylamide degrading capability. The minimal medium containing acrylamide (30 mM) served as a sole source of carbon and nitrogen for their active growth. The optimization of three different factors was analyzed by using Response Surface Methodology (RSM). The bacteria actively degraded the acrylamide at a temperature of 32 degrees C, with a maximum growth at 30 mM substrate (acrylamide) concentration at a pH of 7.2. The acrylamidase activity and degradation of acrylamide was determined by High Performance Liquid Chromatography (HPLC) and Matrix Assisted Laser Desorption and Ionization Time of Flight mass spectrometer (MALDI-TOF). Based on 168 rRNA analysis the selected strain was identified as Gram negative bacilli Stenotrophomonas acidaminiphila MSU12. The acrylamidase was isolated from bacterial extract and was purified by HPLC, whose mass spectrum showed a molecular mass of 38 kDa. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine snail Conus araneosus has unusual significance due to its confined distribution to coastal regions of southeast India and Sri Lanka. Due to its relative scarceness, this species has been poorly studied. In this work, we characterized the venom of C. araneosus to identify new venom peptides. We identified 14 novel compounds. We determined amino acid sequences from chemically-modified and unmodified crude venom using liquid chromatography-electrospray ionization mass spectrometry and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Ten sequences showed six Cys residues arranged in a pattern that is most commonly associated with the M-superfamily of conotoxins. Four other sequences had four Cys residues in a pattern that is most commonly associated with the T-superfamily of conotoxins. The post-translationally modified residue (pyroglutamate) was determined at the N-terminus of two sequences, ar3h and ar3i respectively. In addition, two sequences, ar3g and ar3h were C-terminally amidated. At a dose of 2 nmol, peptide ar3j elicited sleep when injected intraperitoneally into mice. To our knowledge, this is the first report of a peptide from a molluscivorous cone snail with sleep-inducing effects in mice. The novel peptides characterized herein extend the repertoire of unique peptides derived from cone snails and may add value to the therapeutic promise of conotoxins. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the problem of guided wave scattering from delamination in laminated composite and further the problem of estimating delamination size and layer-wise location from the guided wave measurement. Damage location and region/size can be estimated from time of flight and wave packet spread, whereas depth information can be obtained from wavenumber modulation in the carrier packet. The key challenge is that these information are highly sensitive to various uncertainties. Variation in reflected and transmitted wave amplitude in a bar due to boundary/interface uncertainty is studied to illustrate such effect. Effect of uncertainty in material parameters on the time of flight are estimated for longitudinal wave propagation. To evaluate the effect of uncertainty in delamination detection, we employ a time domain spectral finite element (tSFEM) scheme where wave propagation is modeled using higher-order interpolation with shape function have spectral convergence properties. A laminated composite beam with layer-wise placement of delamination is considered in the simulation. Scattering due to the presence of delamination is analyzed. For a single delamination, two identical waveforms are created at the two fronts of the delamination, whereas waves in the two sub-laminates create two independent waveforms with different wavelengths. Scattering due to multiple delaminations in composite beam is studied.