6 resultados para time of flight

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-of-flight measurements of energetic He atoms, field ionization of cryogenic liquid helium clusters, and time-of-flight and REMPI spectroscopy of radical salt clusters were investigated experimentally. The excited He atoms were generated in a corona discharge. Two strong neutral peaks were observed, accompanied by a prompt photon peak and a charged peak. All peaks were correlated with the pulsing of the discharge. The neutral hyperthermal and metastable atoms were formed by different mechanisms at different stages of the corona discharge. Positively charged helium droplets were produced by ionization of liquid helium in an electrostatic spraying experiment. The fluid emerging from a thin glass capillary was ionized by a high voltage applied to a needle inside the capillary. Fine droplets (less than 10 µm in diameter) were produced in showers with currents as high as 0.4 µA at 2-4 kV. The high currents resulting from field ionization in helium and the low surface tension of He I, led to charge densities that greatly exceeded the Rayleigh limit, thus resulting in coulombic explosion of the liquid. In contrast, liquid nitrogen formed a well-defined Taylor cone with droplets having diameters comparable to the jet (≈100 µm) at lower currents (10 nA) and higher voltages (8 kV). The metal-halide clusters of calcium and chlorine were generated by laser ablation of calcium metal in a Ar/CCl4 expansion. A visible spectrum of the Ca2Cl3 cluster was observed from 651 to 630 nm by 1 +1' REMPI. The spectra were composed of a strong origin band at 15 350.8 cm-1 and several weak vibronic bands. Density functional calculations predicted three minimum energy isomers. The spectrum was assigned to the 2B2 ← X 2A1 transition of a planar C2V structure having a ring of two Cl and two Ca atoms and a terminal Cl atom. The ring isomer of Ca2Cl3 has the unpaired electron localized on one Ca2+ ion to form a Ca+ chromophore. A second electronic band of Ca2Cl3 was observed at 720 nm. The band is sharply different from the 650 nm band and likely due to a different isomer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy spectra of 235U atoms sputtered from a 93% enriched 235U metal foil and a hot pressed 235U02 pellet by an 80 keV 40Ar+ beam have been measured in the range 1 eV to 1 keV. The measurements were made using a mechanical time-of-flight spectrometer in conjunction with the fission track technique for detecting 235U. The design and construction of this spectrometer are discussed in detail, and its operation is mathematically analyzed.

The results of the experiment are discussed in the context of the random collision cascade model of sputtering. The spectrum obtained by the sputtering of the 235U metal target was found to be well described by the functional form E(E+Eb)-2.77, where Eb = 5.4 eV. The 235U02 target produced a spectrum that peaked at a lower energy (~ 2 eV) and decreased somewhat more rapidly for E ≳ 100 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulse-height and time-of-flight methods have been used to measure the electronic stopping cross sections for projectiles of 12C, 16O, 19F, 23Na, 24Mg, and 27Al, slowing in helium, neon, argon, krypton, and xenon. The ion energies were in the range 185 keV ≤ E ≤ 2560 keV.

A semiempirical calculation of the electronic stopping cross section for projectiles with atomic numbers between 6 and 13 passing through the inert gases has been performed using a modification of the Firsov model. Using Hartree-Slater-Fock orbitals, and summing over the losses for the individual charge states of the projectiles, good agreement has been obtained with the experimental data. The main features of the stopping cross section seen in the data, such as the Z1 oscillation and the variation of the velocity dependence on Z1 and Z2, are present in the calculation. The inclusion of a modified form of the Bethe-Bloch formula as an additional term allows the increase of the velocity dependence for projectile velocities above vo to be reproduced in the calculation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two lowest T = 3/2 levels in 21Na have been studied in the 19F(3He, n), 20Ne (p,p) and 20Ne (p,p’) reactions, and their excitation energies, spins, parities and widths have been determined. In a separate investigation, branching ratios were measured for the isospin-nonconserving particle decays of the lowest T = 3/2 levels in 17O and 17F to the ground state and first two excited states of 16O, by studying the 15N(3He,n) 17F*(p) 16O and 18O(3He, α)17O*(n) 16O reactions.

The 19F(3He,n) 21Na reaction was studied at incident energies between 4.2 and 5.9 MeV using a pulsed-beam neutron-time-of-flight spectrometer. Two T = 3/2 levels were identified at excitation energies of 8.99 ± 0.05 MeV (J > ½) and 9.22 ± 0.015 MeV (J π = ½+, Γ ˂ 40 keV). The spins and parities were determined by a comparison of the measured angular distributions with the results of DWBA calculations.

These two levels were also obsesrved as isospin-forbidden resonances in the 20Ne(p,p) and 20Ne(p,p’) reactions. Excitation energies were measured and spins, parities, and widths were determined from a single level dispersion theory analysis. The following results were obtained:

Ex = 8.973 ± 0.007 MeV, J π = 5/2 + or 3/2+, Γ ≤ 1.2 keV,

Γpo = 0.1 ± 0.05 keV; Ex = 9.217 ± 0.007 MeV, Jπ = ½ +,

Γ = 2.3 ± 0.5 keV, Γpo = 1.1 ± 0.3 keV.

Isospin assignments were made on the basis of excitation energies, spins, parities, and widths.

Branching ratios for the isospin-nonconserving proton decays of the 11.20 MeV, T = 3/2 level in 17F were measured by the 15N(3He,n) 17 F*(p) 16O reaction to be 0.088 ± 0.016 to the ground state of 16O and 0.22 ± 0.04 to the unresolved 6.05 and 6.13 MeV levels of 16O. Branching ratios for the neutron decays of the analogous T = 3/2 level, at 11.08 MeV in 17O, were measured by the 16O(3He, α)17O*(n)16O reaction to be 0.91 ± 0.15 to the ground state of 16O and 0.05 ± 0.02 to the unresolved 6.05 and 6.13 MeV states. By comparing the ratios of reduced widths for the mirror decays, the form of the isospin impurity in the T = 3/2 levels is shown to depend on Tz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross sections for the reaction 12C(α,γ)16O have been measured for a range of center-of-mass alpha particle energies extending from 1.72 MeV to 2.94 MeV. Two 8"x5" NaI (Tℓ) crystals were used to detect gamma rays; time-of-flight technique was employed to suppress cosmic ray background and background due to neutrons arising mainly from the 13C(α,n)16O reaction. Angular distributions were measured at center-of-mass alpha energies of 2.18, 2.42, 2.56 and 2.83 MeV. Upper limits were placed on the amount of radiation cascading through the 6.92 or 7.12-MeV states in 16O. By means of theoretical fits to the measured electric dipole component of the total cross section, in which interference between the 1¯ states in 16O at 7.12 MeV and at 9.60 MeV is taken into account, it is possible to extract the dimensionless, reduced-alpha-width of the 7.12-MeV state in 16O. A three-level R-matrix parameterization of the data yields the width Θα,F2 = 0.14+0.10-0.08. A "hybrid" R-matrix-optical-model parameterization yields Θα,F2 = 0.11+0.11-0.07. This quantity is of crucial importance in determining the abundances of 12C and 16O at the end of helium burning in stars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The (He3, n) reactions on B11, N15, O16, and O18 targets have been studied using a pulsed-beam time-of-flight spectrometer. Special emphasis was placed upon the determination of the excitation energies and properties of states with T = 1 (in Ne18), T = 3/2 (in N13 and F17) and T = 2 (in Ne20). The identification of the T = 3/2 and T = 2 levels is based on the structure of these states as revealed by intensities and shapes of angular distributions. The reactions are interpreted in terms of double stripping theory. Angular distributions have been compared with plane and distorted wave stripping theories. Results for the four reactions are summarized below:

1) O16 (He3, n). The reaction has been studied at incident energies up to 13.5 MeV and two previously unreported levels in Ne18 were observed at Ex = 4.55 ± .015 MeV (Γ = 70 ± 30 keV) and Ex = 5.14 ± .018 MeV (Γ = 100 ± 40 keV).

2) B11 (He3, n). The reaction has been studied at incident energies up to 13.5 MeV. Three T = 3/2 levels in N13 have been identified at Ex = 15.068 ± .008 MeV (Γ ˂ 15 keV), Ex = 18.44 ± .04, and Ex 18.98 ± .02 MeV (Γ = 40 ± 20 keV).

3) N15 (He3, n). The reaction has been studied at incident energies up to 11.88 MeV. T = 3/2 levels in F17 have been identified at Ex = 11.195 ± .007 MeV (Γ ˂ 20 keV), Ex = 12.540 ± .010 MeV (Γ ˂ 25 keV), and Ex = 13.095 ± .009 MeV (Γ ˂ 25 keV).

4) O18 (He3, n). The reaction has been studied at incident energies up to 9.0 MeV. The excitation energy of the lowest T = 2 level in Ne20 has been found to be 16.730 ± .006 MeV (Γ ˂ 20 keV).

Angular distributions of the transitions leading to the above higher isospin states are well described by double stripping theory. Analog correspondences are established by comparing the present results with recent studies (t, p) and (He3, p) reactions on the same targets.