135 resultados para solution and solubility
em Indian Institute of Science - Bangalore - Índia
Resumo:
The conformational analysis of a protected homodipeptide of 1-aminocyclopentanecarboxylic acid (Acc5) has been carried out. 1H-nmr studies establish a -turn conformation for Boc-Acc5-Acc5-NHMe in chloroform and dimethylsulfoxide solutions involving the methylamide NH in an intramolecular hydrogen bond. Supportive evidence for the formation of an intramolecular hydrogen bond is obtained from ir studies. X-ray diffraction studies reveal a type III -turn conformation in the solid state stabilized by a 4 1 hydrogen bond between the Boc CO and methylamide NH groups. The , values for both Acc5 residues are close to those expected for an ideal 310-helical conformation ( ± 60°, ±30°).
Resumo:
The conformations of Boc-l-Phe-(AiB)3-OH (1) and Boc-l-Phe-(Aib)3-OMe (2) which correspond to the amino terminal sequence of the emerimicins and antiamoebins have been studied in solution using 270 MHz 1H n.m.r. In dimethyl sulphoxide solution both peptides show the presence of two strongly solvent shielded Aib NH groups, consistent with a consecutive β-turn conformation, involving the Aib(3) and Aib(4) NH groups in intramolecular 4 → I hydrogen bonds. This folded conformation is maintained for 2 in chloroform solution. Nuclear Overhauser effect studies provide evidence for a Type II Phe-Aib β-turn. An X-ray diffraction study of Boc-(d,l)-Phe-(Aib)3-OH establishes a single type III(III′) β-turn conformation with Aib(2)-Aib(3) as the corner residues. A single intramolecular 4 → I hydrogen bond between Phe(I) CO and Aib(4) NH groups is observed in the crystal. The solution conformation may incorporate a consecutive type II-III′ structure for the Phe(1)-Aib(2)-Aib(3) segment, with the initial type II β-turn being destabilized by intermolecular interactions in the solid state.
Resumo:
The solution and solid-state conformations of the peptide disulfide Boc-Cys-Pro-Aib-Cys-NHMe have been determined by NMR spectroscopy and X-ray diffraction. The Cys(4) and methylamide NH groups are solvent shielded in CDCI3 and (CD,),SO, suggesting their involvement in intramolecular hydrogen bonding. On the basis of known stereochemical preferences of Pro and Aib residues, a consecutive @-turn structure is favored in solution. X-ray diffraction analysis reveals a highly folded 310 helical conformation for the peptide, with the S-S bridge lying approximately parallel to the helix axis, linking residues 1 and 4. The backbone conformational angles are Cys(1) 4 = -121.1', $ = 65.6"; Pro(2) 4 = -58.9', 4 = -34.0'; Aib(3) 4 = -61.8', $ = -17.9'; Cys(4) 4 = -70.5', $ = -18.6'. Two intramolecular hydrogen bonds are observed between Cys(1) CO--HN Cys(4) and Pro(2) CO--HNMe. The disulfide bond has a right-handed chirality, with a dihedral angle (xss) of 82'.
Resumo:
A thorough investigation of salt concentration dependence of lithium DNA fibres is made using X-ray diffraction. While for low salt the C-form pattern is obtained, crystalline B-type diffraction patterns result on increasing the salt concentration. The salt content in the gel (from which fibres are drawn) is estimated by equilibrium dialysis using the Donnan equilibrium principle. The salt range giving the best crystalline B pattern is determined. It is found that in this range meridional reflections occur on the fourth and sixth layer lines. In addition, the tenth layer meridian is absent at a particular salt concentration. These results strongly suggest the presence of non-helical features in the DNA molecule. Preliminary analysis of the diffraction patterns indicates a structural variability within the B-form itself. Further, the possibility of the structural parameters of DNA being similar in solid state and in solution is discussed.
Resumo:
An N-alpha-protected model tripeptide amide containing, in the central position, an alpha,beta-dehydrophenylalanine (Z-configurational isomer), Boc-L-Pro-DELTA-Z-Phe-Gly-NH2 (Boc, tert-butyloxycarbonyl), has been synthesized by solution methods and fully characterized. IR absorption and H-1 NMR studies provided evidence for the occurrence of a significant population of a conformer containing two consecutive, intramolecularly H-bonded (type II-III') beta-bends in solution. However, an X-ray diffraction analysis clearly indicates that only the type-II beta-bend structure survives in the crystal state.
Resumo:
The conformational analysis of a protected homodipeptide of 1-aminocyclopentanecarboxylic acid (Acc5) has been carried out. 1H-nmr studies establish a ?-turn conformation for Boc-Acc5-Acc5-NHMe in chloroform and dimethylsulfoxide solutions involving the methylamide NH in an intramolecular hydrogen bond. Supportive evidence for the formation of an intramolecular hydrogen bond is obtained from ir studies. X-ray diffraction studies reveal a type III ?-turn conformation in the solid state stabilized by a 4 ? 1 hydrogen bond between the Boc CO and methylamide NH groups. The ?,? values for both Acc5 residues are close to those expected for an ideal 310-helical conformation (?? ± 60°, ?? ±30°).
Resumo:
The conformations of Boc-l-Phe-(AiB)3-OH (1) and Boc-l-Phe-(Aib)3-OMe (2) which correspond to the amino terminal sequence of the emerimicins and antiamoebins have been studied in solution using 270 MHz 1H n.m.r. In dimethyl sulphoxide solution both peptides show the presence of two strongly solvent shielded Aib NH groups, consistent with a consecutive β-turn conformation, involving the Aib(3) and Aib(4) NH groups in intramolecular 4 → I hydrogen bonds. This folded conformation is maintained for 2 in chloroform solution. Nuclear Overhauser effect studies provide evidence for a Type II Phe-Aib β-turn. An X-ray diffraction study of Boc-(d,l)-Phe-(Aib)3-OH establishes a single type III(III′) β-turn conformation with Aib(2)-Aib(3) as the corner residues. A single intramolecular 4 → I hydrogen bond between Phe(I) CO and Aib(4) NH groups is observed in the crystal. The solution conformation may incorporate a consecutive type II-III′ structure for the Phe(1)-Aib(2)-Aib(3) segment, with the initial type II β-turn being destabilized by intermolecular interactions in the solid state.
Resumo:
An interdiffusion study is conducted on the Co-W system by a diffusion couple technique. The interdiffusion coefficient of the Co(W) solid solution and the Co7W6 mu phase is determined. The activation energy is found to increase with the W content of the Co(W) solid solution. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The reaction of 2-formylbenzenesulfonyl chloride 1 and its pseudo isomer 2 with primary amines give either the corresponding sulfonamido Schiff bases or the corresponding 2-formylbenzenesulfonamide depending on the concentration of the amine used. The derivatives exist as an equilibrium mixture of the corresponding sulfonamide and 2-alkyl-3-hydroxy(or 3-aminoalkyl)-benzisothiazole-1,1-dioxide. Spectroscopic studies suggest that 2-formylbenzenesulfonamides exist as benzisothiazole-1,1-dioxides in the solid state, as a mixture of 2-formylbenzenesulfonamide and the corresponding benzisothiazole-1,1-dioxide in solution and as 2-formyl-benzenesulfonamides in the gas phase.
Resumo:
The solution- and melt-phase photochemistry of four trans-benzylidene-d,l-piperitones (1) has been investigated under a variety of conditions. The 1 undergo trans reversible cis isomerization to establish a quasi photostationary state. Further irradiation leads to 2 via oxidative ring closure. Conspicuously absent are dimers (obtained upon irradiation of the neat crystals) and the plausible Norrish Type II photoproducts, 3. Although 1c yields 2c, no evidence for the alternative cyclization route to 2a (requiring loss of HCl) has been observed. Rationalizations for the transformations are presented. The structure of 2b has been determined unambiguously from X-ray crystallographic analysis.
Resumo:
The trans- and cis-stilbenes upon inclusion in NaY zeolite are thermally stable. Direct excitation and triplet sensitization results in geometric isomerization and the excited state behavior under these conditions are similar to that in solution. Upon direct excitation, a photostationary state consisting of 65% cis and 35% trans isomers is established. Triplet sensitization with 2-acetonaphthone gave a photostationary state consisting of 63% cis and 37% trans isomers. These numbers are similar to the ones obtained in solution. Thus, the presence of cations and the confined space within the zeolite have very little influence on the overall chemistry during direct and triplet sensitization. However, upon electron transfer sensitization with N-methylacridinium (NMA) as the sensitizer within NaY, isomerization from cis-stilbene radical cation to trans-stilbene occurs and the recombination of radical ions results in triplet stilbene. Prolonged irradiation gave a photostationary state (65% cis and 35% trans) similar to triplet sensitization. This behavior is unique to the zeolite and does not take place in solution. Steady state fluorescence measurements showed that the majority of stilbene molecules are close to the N-methylacridinium sensitizer. Diffuse reflectance flash photolysis studies established that independent of the isomer being sensitized only trans radical cation is formed. Triplet stilbene is believed to be generated via recombination of stilbene radical cation and sensitizer radical anion. One should be careful in using acidic HY zeolite as a medium for photoisomerization of stilbenes. In our hands, in these acidic zeolites isomerization dominated the photoisomerization. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The compositions of the (Mn,Co)O solid solution with rock salt structure in equilibrium with (Mn,Co)Cr2O4 and (Mn,Co)Al2O4 spinel solid solutions have been determined by X-ray diffraction measurements at 1100° C and an oxygen partial pressure of 10–10 atm. The ion exchange equilibria are quantitatively analysed, using values for activities in the (Mn,Co)O solid solution available in the literature, in order to obtain activities in the spinel solid solutions. The MnAl2O4-CoAl2O4 solid solution exhibits negative deviations from Raoult's law, consistent with the estimated cation disorder in the solid solution, while the MnCr2O4-CoCr2O4 solid solution shows slightly positive deviations. The difference in the Gibbs free energy of formation of the two pure chromites and aluminates derived from the results of this study are in good agreement with recent results obtained from solid oxide galvanic cells and gas-equilibrium techniques.
Resumo:
New C-13-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the C-13-methyl nucleus and its directly attached C-13 spin in a molecule. In proteins such correlations edit the C-13-resonances of different methyl containing residues into distinct spectral regions yielding a high resolution spectrum. This has a range of applications as exemplified for different systems such as large proteins, intrinsically disordered polypeptides and proteins with a paramagnetic centre.
Resumo:
Thirteen new solid forms of etravirine were realized in the process of polymorph and cocrystal/salt screening to improve the solubility of this anti-HIV drug. One anhydrous form, five salts (hydrochloride, mesylate, sulfate, besylate, and tosylate), two cocrystals (with adipic acid and 1,3,5-benzenetricarboxylic acid), and five solvates (formic acid, acetic acid, acetonitrile, and 2:1 and 1:1 methanolates) were obtained. The conformational flexibility of etravirine suggests that it can adopt four different conformations, and among these, two are sterically favorable. However, in all 13 solid forms, the active pharmaceutical ingredient (API) was found to adopt just one conformation. Due to the poor aqueous solubility of the API, the solubilities of the salts and cocrystals were measured in a 50% ethanol water mixture at neutral pH. Compared to the salts, the cocrystals were found to be stable and showed an improvement in solubility with time. All the salts were dissociated within an hour, except the tosylate, which showed 50% phase transformation after 1 h of the slurry experiment. A structure property relationship was examined to analyze the solubility behavior of the solid forms.
Resumo:
Systematic structural perturbation has been used to fine-tune and understand the luminescence properties of three new 1,8-naphthalimides (NPIs) in solution and aggregates. The NPIs show blue emission in the solution state and their fluorescence quantum yields are dependent upon their molecular rigidity. In concentrated solutions of the NPIs, intermolecular interactions were found to quench the fluorescence due to the formation of excimers. In contrast, upon aggregation (in THF/H2O mixtures), the NPIs show aggregation-induced emission enhancement (AIEE). The NPIs also show moderately high solid-state emission quantum yields (ca. 10-12.7 %). The AIEE behaviour of the NPIs depends on their molecular rigidity and the nature of their intermolecular interactions. The NPIs 1-3 show different extents of intermolecular (pi-pi and C-H center dot center dot center dot O) interactions in their solid-state crystal structures depending on their substituents. Detailed photophysical, computational and structural investigations suggest that an optimal balance of structural flexibility and intermolecular communication is necessary for achieving AIEE characteristics in these NPIs.