120 resultados para sexualak eta ugaltze eskubideak
em Indian Institute of Science - Bangalore - Índia
Resumo:
Correlators of singlet and octet axial currents, as well as anomaly and pseudoscalar densities have been studied using QCD sum rules. Several of these sum rules are used to determine the couplings f(eta)(8),f(eta)(0), f(eta)('8) and f(eta)('0). We find mutually consistent values which are also in agreement with phenomenological values obtained from data on various decay and production rates. While most of the sum rules studied by us are independent of the contributions of direct instantons and screening correction, the singlet-singlet current correlator and the anomaly-anomaly correlator improve by their inclusion.
Resumo:
Pyrolysis of (eta(5)-C5Me5WH3)B4H8, 1, in the presence of excess BHCl2 center dot SMe2 in toluene at 100 degrees C led to the isolation of (eta(5)-C5Me5W)(2)B5H9, 2, and B-Cl inserted (eta(5)-C5Me5W)(2)B5H8Cl, 3, and (eta(5)-C5Me5W)(2)B5H7Cl2, (four isomers). All the Chlorinated tungstaboranes were isolated as red and air and moisture sensitive solids. These new compounds have been characterized in solution by H-1, B-11, C-13 NMR, and the structural types were unequivocally established by crystallographic analysis of compounds 3, 4, and 7. Density functional theory (DFT) calculations were carded out on the model molecules of 3-7 to elucidate the actual electronic structures of these chlorinated species. On grounds of DFT calculations we demonstrated the role of transition metals, bridging hydrogens, and the effect of electrophilic substitution of hydrogens at B-H vertices of metallaborane structures.
Resumo:
The reaction of the [(eta(5)-C5Me5)MoCl4] complex with [LiBH4 - TH F] in toluene at - 70 degrees C, followed by pyrolysis at 110 degrees C, afforded dark brown [(eta(5)-C5Me5Mo)(3)MoB9H18], 2, in parallel with the known [(eta(5)-C5Me5Mo)(2)B5H9], 1. Compound 2 has been characterized in solution by H-1, B-11, and C-13 NMR spectroscopy and elemental analysis, and the structural types were unequivocally established by crystallographic studies. The title compound represents a novel class of vertex-fused clusters in which a Mo atom has been fused in a perpendicular fashion between two molybdaborane clusters. Electronic structure calculations employing density functional theory yield geometries in agreement with the structure determinations, and on grounds of density functional theory calculations, we have analyzed the bonding patterns in the structure,
Resumo:
A new dicationic dihydrogen complex of the type trans-[(dppe)(2)Ru(eta (2)-H-2)(PF(OMe)(2))]BF4](2) has been prepared and characterized. A large coupling of about 50 Hz between the H-2 and trans-phosphorus ligand in this complex has been observed.
Resumo:
An air-stable and water-soluble diastereomeric half-sandwich ruthenium(I1) complex, [Ru(s-MeCsH4Pr'-p)(H*O)-(L*)] (C104) (l), has been isolated and structurally characterized [HL* = (27)-(a methylbenzyl)salicylaldimine,2-HOC6H4CH-NCHMePhI. Complex 1, Czd-I3oNO&lRu, crystallizes in the noncentric triclinic space group P1 with a = 9.885(1) A, b = 10.185(1) A, c = 14.187(2) A, a = 110.32(1)', 6 = 102.17(1)', y = 102.41(1)O, V=1243( 1) A3, and 2 = 2. The X-ray structure shows the presence of two diastereomers in a 1:l ratio having RR,,,SCand SR,,,&c onfigurations. The Ru-OHz bond distances are considerably long, and the values for RR, - a~n d SRu-1isomers are 2.1 19(5) and 2.203(5) A, respectively. The aqua complex (1) exists as a single diastereomer in solution,and it forms stable adducts with P-, N-, and halide-donor ligands. The stereochemical changes associated with adduct-forming reactions follow an inversion order: PPhs >> P(OMe)3 > pyridine bases >> halides (I, Br, Cl) >H20.
Resumo:
The use of fac-[Mo(CO)(3)(MeCN)(eta(2)-L(1))] (1a) {L(1) = Ph(2)PN(Pr-i)PPh(DMP)}(2) as a precursor to metalloligands and bimetallic, heterotrimetallic, and heptacoordinated complexes is reported. The reaction of 1a with diphosphazane, dppa, or a diphosphinoalkane such as dppm or dppe yields the fac-eta(1)-diphosphine substituted metalloligands, fac-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-PXP)] {PXP = dppa (2), dppm (3), and dppe (4)}. These undergo isomerization to yield the corresponding mer-diphosphine complexes (5-7). Oxidation of the uncoordinated phosphorus atom of the mer-eta(1)-dppm-substituted complex eventually provides mer-[Mo(CO)(3)-(eta(2)-L(1)){eta(1)-Ph(2)PCH(2)P(O)Ph(2)}](8). The structure of the latter complex has been confirmed by single crystal X-ray diffraction {triclinic system, P ($) over bar 1; a = 11.994(3), b = 14.807(2), c = 15.855(3) Angstrom; alpha = 114.24(1), beta = 91.35(2), and gamma = 98.95(1)degrees; Z = 2, 4014 data (F-0 > 5 sigma(F-0)), R = 0.066, R(W) = 0.069}. Treatment of the dppe metalloligand 7 with [PtCl2(COD)] yields the heterotrimetallic complex cis-[PtCl2{mer-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-dppe]}(2)] (9). Attempts to prepare a related trimetallic complex with the dppm-containing metalloligand were unsuccessful; only the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) and cis-[PtCl2(eta(2)-dppm)] were obtained. Reaction of la with dppe in the ratio 2:1 yields the mer-mer dinuclear complex [{mer-[Mo(CO)(3)(eta(2)-L(1))]}(2)(mu-dppe)] (10) bridged by dppe. Oxidation of 1a with iodine yields the Mo(II) heptacoordinated complex [MoI2(CO)(2)(eta(3)-L(1))] (11) with tridentate PPN coordination. The same Mo(II) complex 11 is also obtained by the direct oxidation of the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) with iodine. The structure of 11 has been confirmed by X-ray diffraction studies {monoclinic system, Cc; a = 10.471(2), b = 19.305(3), c = 17.325(3) Angstrom; beta = 95.47(2)degrees; Z = 4, 3153 data (F-0 > 5 sigma(F-0)), R = 0.049, R(W) = 0.051}. This complex exhibits an unusual capped-trigonal prismatic geometry around the metal. A similar heptacoordinated complex 12 with a chiral diphosphazane ligand {L(3) = (S,R)-P(h)2PN-(*CHMePh)*PPh(DMP)} has also been synthesized.
Resumo:
Complexes of the formulation [(eta(6)-p-cymene)Ru(O-2-C6H4-CH=NC6H4-4-CH3)(L)](ClO4), where L is gamma-picoline, 4-vinylpyridine, 1-methylimidazole and 1-vinylimidazole have been prepared and characterised. The molecular structure of the vinylpyridine adduct has been determined by X-ray crystallography. The crystal belongs to the monoclinic space group P2(1) with the following cell dimensions for the C31H33CIN2O5Ru(M = 650.11): a = 10.890(2)Angstrom, b = 22.295(9)Angstrom, c = 12.930(2)Angstrom, beta = 109.30(2)degrees(3), V = 2964(l)Angstrom 3, Z = 4; D-c = 1.457g cm(-3), lambda(Mo-K alpha) = 0.7107 Angstrom; mu(Mo-K alpha)= 6.61 cm(-1); T = 293 K; R = 0.0359 (wR(2) = 0.0981) for 4819 reflections with I > 2 sigma(I). The structure shows the non-bonding nature of the double bond of the 4-vinylpyridine ligand in the complex in which the metal is bonded to the eta(6)-p-cymene, the N, O-bidentate chelating schiff-base and the unidentate N-donor pyridine ligands.
Resumo:
2D NMR spectroscopy has been used to determine the metal configuration in solution of three complexes, viz. [(eta(6)-p-cymene)Ru(L*)Cl] (1) and [(eta(6)-p-cymene)Ru(L*)(L')] (ClO4) (L' = H2O, 2; PPh3, 3), where L* is the anion of (S)-(1-phenylethyl)salicylaldimine. The complexes exist in two diastereomeric forms in solution. Both the (R-Ru,S-C)- and (S-Ru,S-C)-diastereomers display the presence of attractive, CH/pi interaction involving the phenyl group attached to the chiral carbon and the cymene ring hydrogens. This interaction restricts the rotation of the C*-N single bond and, as a result, two structural types with either the hydrogen atom attached to the chiral carbon (C*) or the methyl group attached to C* in close proximity of the cymene ring protons get stabilized. Using 2D NMR spectroscopy as a tool, the spatial interaction involving these protons are studied in order to obtain the metal configuration(s) of the diastereomeric complexes in solution. This technique has enabled us to determine the metal configuration as (R-Ru,S-C) for the major isomers of 1-3 in solution.
Resumo:
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H-2)(L)][BF4](2) (dppm = Ph2PCH2PPh2; L = P(OMe)(3), P(OEt)(3), PF((OPr)-Pr-i)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF4] (L = P(OMe)(3), P(OEt)(3), P((OPr)-Pr-i)(3)) using HBF4.Et2O. The cis-[(dppm)(2)Ru(H)(L)][BF4] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H-2 ligand in the dihydrogen complexes is labile, and the loss of H-2 was found to be reversible. The protonation reactions of the starting hydrides with trans PMe3 or PMe2Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dPPM)(2)Ru(BF4)Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF4], cis-[(dppm)(2)Ru-(H)(P(OMe)(3))][BF4], and cis-[(dppm)(2)Ru(H)(P((OPr)-Pr-i)(3))][BF4] complexes have been determined.
Resumo:
Two new Ru(II)-complexes RuH(Tpms)(PPh3)(2)] 1 (Tpms - (C3H3N2)(3)CSO3, tris-(pyrazolyl) methane sulfonate) and Ru(OTf)(Tpms)(PPh3)(2)] 2 (OTf = CF3SO3) have been synthesized and characterized wherein Ru-H and Ru-OTf are the key reactive centers. Reaction of 1 with HOTf results in the Ru(eta(2)-H-2)(Tpms)(PPh3)(2)]OTf] complex 3, whereas reaction of 1 with Me3SiOTf affords the dihydrogen complex 3 and complex 1 through an unobserved sigma-silane intermediate. In addition, an attempt to characterize the sigma methane complex via reaction of complex 1 with CH3OTf yields complex 2 and free methane. On the other hand, reaction of Ru(OTf)(Tpms)(PPh3)(2)] 2 with H-2 and PhMe2SiH at low temperature resulted in sigma-H-2, 3 and a probable sigma-silane complexes, respectively. However, no sigma-methane complex was observed for the reaction of complex 2 with methane even at low temperature. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
The reaction of Ru(eta(6)-cymene)Cl-2](2) and PPh2Cl in the ratio 1:2 gives a stable Ru(h(6)-cymene) Cl-2(PPh2Cl)] complex. Attempts to make the cationic Ru(eta(6)-cymene)Cl(PPh2Cl)(2)]Cl with excess PPh2Cl and higher temperatures led to adventitious hydrolysis and formation of Ru(eta(6)-cymene)Cl-2(PPh2OH)]. Attempts to make a phosphinite complex by reacting Ru(eta(6)-cymene)Cl-2](2) with PPh2Cl in the presence of an alcohol results in the reduction of PPh2Cl to give Ru(eta(6)-cymene)Cl-2(PPh2H)] and the expected phosphinite. The yield of the hydride complex is highest when the alcohol is 1-phenyl-ethane-1,2-diol. All three half-sandwich complexes are characterized by X-ray crystallography. Surprisingly, the conversion of chlorodiphenylphosphine to diphenylphosphine is mediated by 1-phenyl-ethane-1,2-diol even in the absence of the ruthenium half-sandwich precursor.
Resumo:
Test results reported on several natural sensitive soils show significant anisotropy of the yield curves, which are generally oriented along the coefficient of earth pressure at rest (K-0) axis. An attempt is made in this paper to explain the anisotropy in yielding from microstructural considerations. An elliptic pore, with particle domains aligned along the periphery of the pore, and with the major axis of the pore being oriented along the direction of the in situ major principal stress, is chosen as the unit of microstructure. An analysis of forces at the interdomain contacts around the ellipse is carried out with reference to experimentally determined yield stress conditions of one soil, and a yield criteria is defined. The analysis, with the proposed yield criteria, enables one to define the complete yield curve for any other soil from the results of only two tests (one constant eta compression test with eta close to eta(K?0), where eta is the stress ratio (= q/p) and eta(K?0) is the stress ratio corresponding to anisotropic K-0 compression, and another undrained shear test). Predicted yield curves are compared with experimental yield curves of several soils reported in the literature.