141 resultados para semiconductor electrode

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schottky barrier devices of metal/semiconductor/metal structure were fabricated using organic semiconductor polyaniline (PANI) and aluminium thin film cathode. Aluminium contacts were made by thermal evaporation technique using two different forms of metals (bulk and nanopowder). The structure and surface morphology of these films were investigated by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. Grain size of the as-deposited films obtained by Scherrer's method, modified Williamson-Hall method, and SEM were found to be different. Current-voltage (I-V) characteristic of Schottky barrier device structure indicates that the calculated current density (J) for device fabricated from aluminium nanopowder is more than that from aluminium in bulk form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly luminescent CdSe/CdS core-shell nanocrystals have been assembled on indium tin oxide (ITO) coated glass substrates using a wet synthesis route. The physical properties of the quantum dots (QD) have been investigated using X-ray diffraction, transmission electron microscopy and optical absorption spectroscopy techniques. These quantum dots showed a strong enhancement in the near band edge absorption. The in situ luminescence behavior has been interpreted in the light of the quantum confinement effect and induced strain in the core-shell structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured Zn1-xMnxS films (0 less-than-or-equals, slant x less-than-or-equals, slant 0.25) were deposited on glass substrates by simple resistive thermal evaporation technique. All the films were deposited at 300 K in a vacuum of 2*10-6 m bar. All the films temperature dependence of resistivity revealed semiconducting behaviour of the samples. Hot probe test revealed that all the samples exhibited n-type conductivity. The nanohardness of the films ranges from 4.7 to 9.9 GPa, Young's modulus value ranging 69.7-94.2 GPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical capacity retention of nearly X-ray amorphous nanostructured manganese oxide (nanoMnO2) synthesized by mixing directly KMnO4 with ethylene glycol under ambient conditions for supercapacitor studies is enhanced significantly. Although X-ray diffraction (XRD) pattern of nanoMnO2 shows poor crystallinity, it is found that by Mn K-edge X-ray absorption near edge structure (XANES) measurement that the nanoMnO2 obtained is locally arranged in a δ-MnO2-type layered structure composed of edge-shared network of MnO6 octahedra. Field emission scanning electron microscopy and XANES measurements show that nanoMnO2 contains nearly spherical shaped morphology with δ-MnO2 structure, and 1D nanorods of α-MnO2 type structure (powder XRD) in the annealed (600 °C) sample. Volumetric nitrogen adsorption−desorption isotherms, inductively coupled plasma analysis, and thermal analysis are carried out to obtain physicochemical properties such as surface area (230 m2 g−1), porosity of nanoMnO2 (secondary mesopores of diameter 14.5 nm), water content, composition, etc., which lead to the promising electrochemical properties as an electrode for supercapacitor. The nanoMnO2 shows a very high stability even after 1200 cycles with capacity retention of about 250 F g−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electric field in certain electrostatic devices can be modeled by a grounded plate electrode affected by a corona discharge generated by a series of parallel wires connected to a DC high-voltage supply. The system of differential equations that describe the behaviour (i.e., charging and motion) of the conductive particle in such an electric field has been numerically solved, using several simplifying assumptions. Thus, it was possible to investigate the effect of various electrical and mechanical factors on the trajectories of conductive particles. This model has been employed to study the behaviour of coalparticles in fly-ash corona separators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resistivity of selenium-doped n-InP single crystal layers grown by liquid-phase epitaxy with electron concentrations varying from 6.7 x 10$^18$ to 1.8 x 10$^20$ cm$^{-3}$ has been measured as a function of hydrostatic pressure up to 10 GPa. Semiconductor-metal transitions were observed in each case with a change in resistivity by two to three orders of magnitude. The transition pressure p$_c$ decreased monotonically from 7.24 to 5.90 GPa with increasing doping concentration n according to the relation $p_c = p_o [1 - k(n/n_m)^a]$, where n$_m$ is the concentration (per cubic centimetre) of phosphorus donor sites in InP atoms, p$_o$ is the transition pressure at low doping concentrations, k is a constant and $\alpha$ is an exponent found experimentally to be 0.637. The decrease in p$_c$ is considered to be due to increasing internal stress developed at high concentrations of ionized donors. The high-pressure metallic phase had a resistivity (2.02-6.47) x 10$^{-7}$ $\Omega$ cm, with a positive temperature coefficient dependent on doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantitative expression has been obtained for the equivalent resistance of an internal short in rechargeable cells under constant voltage charging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequencies of the two modes of surface plasmon oscillations exhibited by coated semiconductor spheres can either decrease or increase with the size of the particle depending upon the ratio ωh1/ωh2, ε∞1 and ε∞2. When ωh1 = ωh2, the soft mode frequency becomes independent of the size of the sphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical resistivity of layerd crystalline GeSe has been investigated up to a pressure of 100 kbar and down to liquid-nitrogen temperature by use of a Bridgman anvil device. A pressure-induced first-order phase transition has been observed in single-crystal GeSe near 6 GPa. The high-pressure phase is found to be quenchable and an x-ray diffraction study of the quenched material reveals that it has the face-centered-cubic structure. Resistivity measurements as a function of pressure and temperature suggest that the high-pressure phase is metallic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that the effect of adsorption of inert molecules on electrode reaction rates is completely accounted for, by introducing into the rate equation, adsorption-induced changes in both the effective electrode area as well as in the electrostatic potential at the reaction site with an additional term for the noncoulombic interaction between the reactant and the adsorbate. The electrostatic potential at the reaction site due to the adsorbed layer is calculated using a model of discretely-distributed molecules in parallel orientation when adsorbed on the electrode with an allowance for thermal agitation. The resulting expression, which is valid for the limiting case of low coverages, is used to predict the types of molecular surfactants that are most likely to be useful for acceleration and inhibition of electrode reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-insulator-semiconductor capacitors using aluminum Bi2O3 and silicon have been studied for varactor applications. Reactively sputtered Bi2O3 films which under suitable proportions of oxygen and argon and had high resistivity suitable for device applications showed a dielectric constant of 25. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the same current-time (I-t) curves, electrochemical kinetic parameters are determined by two methods, (a) using the ratio of current at a given potential to the diffusion-controlled limiting current and (b) curve fitting method, for the reduction of Cu(II)–CyDTA complex. The analysis by the method (a) shows that the rate determining step involves only one electron although the overall reduction of the complex involves two electrons suggesting thereby the stepwise reduction of the complex. The nature of I-t curves suggests the adsorption of intermediate species at the electrode surface. Under these circumstances more reliable kinetic parameters can be obtained by the method (a) compared to that of (b). Similar observations are found in the case of reduction of Cu(II)–EDTA complex.