10 resultados para routers

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier studies have exploited statistical multiplexing of flows in the core of the Internet to reduce the buffer requirement in routers. Reducing the memory requirement of routers is important as it enables an improvement in performance and at the same time a decrease in the cost. In this paper, we observe that the links in the core of the Internet are typically over-provisioned and this can be exploited to reduce the buffering requirement in routers. The small on-chip memory of a network processor (NP) can be effectively used to buffer packets during most regimes of traffic. We propose a dynamic buffering strategy which buffers packets in the receive and transmit buffers of a NP when the memory requirement is low. When the buffer requirement increases due to bursts in the traffic, memory is allocated to packets in the off-chip DRAM. This scheme effectively mitigates the DRAM access bottleneck, as only a part of the traffic is stored in the DRAM. We build a Petri net model and evaluate the proposed scheme with core Internet like traffic. At 77% link utilization, the dynamic buffering scheme has a drop rate of just 0.65%, whereas the traditional DRAM buffering has 4.64% packet drop rate. Even with a high link utilization of 90%, which rarely happens in the core, our dynamic buffering results in a packet drop rate of only 2.17%, while supporting a throughput of 7.39 Gbps. We study the proposed scheme under different conditions to understand the provisioning of processing threads and to determine the queue length at which packets must be buffered in the DRAM. We show that the proposed dynamic buffering strategy drastically reduces the buffering requirement while still maintaining low packet drop rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a power, latency and throughput trade-off study on NoCs by varying microarchitectural (e.g. pipelining) and circuit level (e.g. frequency and voltage) parameters. We change pipelining depth, operating frequency and supply voltage for 3 example NoCs - 16 node 2D Torus, Tree network and Reduced 2D Torus. We use an in-house NoC exploration framework capable of topology generation and comparison using parameterized models of Routers and links developed in SystemC. The framework utilizes interconnect power and delay models from a low-level modelling tool called Intacte[1]1. We find that increased pipelining can actually reduce latency. We also find that there exists an optimal degree of pipelining which is the most energy efficient in terms of minimizing energy-delay product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Packet forwarding is a memory-intensive application requiring multiple accesses through a trie structure. With the requirement to process packets at line rates, high-performance routers need to forward millions of packets every second with each packet needing up to seven memory accesses. Earlier work shows that a single cache for the nodes of a trie can reduce the number of external memory accesses. It is observed that the locality characteristics of the level-one nodes of a trie are significantly different from those of lower level nodes. Hence, we propose a heterogeneously segmented cache architecture (HSCA) which uses separate caches for level-one and lower level nodes, each with carefully chosen sizes. Besides reducing misses, segmenting the cache allows us to focus on optimizing the more frequently accessed level-one node segment. We find that due to the nonuniform distribution of nodes among cache sets, the level-one nodes cache is susceptible t high conflict misses. We reduce conflict misses by introducing a novel two-level mapping-based cache placement framework. We also propose an elegant way to fit the modified placement function into the cache organization with minimal increase in access time. Further, we propose an attribute preserving trace generation methodology which emulates real traces and can generate traces with varying locality. Performanc results reveal that our HSCA scheme results in a 32 percent speedup in average memory access time over a unified nodes cache. Also, HSC outperforms IHARC, a cache for lookup results, with as high as a 10-fold speedup in average memory access time. Two-level mappin further enhances the performance of the base HSCA by up to 13 percent leading to an overall improvement of up to 40 percent over the unified scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose several stochastic approximation implementations for related algorithms in flow-control of communication networks. First, a discrete-time implementation of Kelly's primal flow-control algorithm is proposed. Convergence with probability 1 is shown, even in the presence of communication delays and stochastic effects seen in link congestion indications. This ensues from an analysis of the flow-control algorithm using the asynchronous stochastic approximation (ASA) framework. Two relevant enhancements are then pursued: a) an implementation of the primal algorithm using second-order information, and b) an implementation where edge-routers rectify misbehaving flows. Next, discretetime implementations of Kelly's dual algorithm and primaldual algorithm are proposed. Simulation results a) verifying the proposed algorithms and, b) comparing the stability properties are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large part of today's multi-core chips is interconnect. Increasing communication complexity has made essential new strategies for interconnects, such as Network on Chip. Power dissipation in interconnects has become a substantial part of the total power dissipation. Techniques to reduce interconnect power have thus become a necessity. In this paper, we present a design methodology that gives values of bus width for interconnect links, frequency of operation for routers, in Network on Chip scenario that satisfy required throughput and dissipate minimal switching power. We develop closed form analytical expressions for the power dissipation, with bus width and frequency as variables and then use Lagrange multiplier method to arrive at the optimal values. We present a 4 port router in 90 nm technology library as case study. The results obtained from analysis are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RECONNECT is a Network-on-Chip using a honeycomb topology. In this paper we focus on properties of general rules applicable to a variety of routing algorithms for the NoC which take into account the missing links of the honeycomb topology when compared to a mesh. We also extend the original proposal [5] and show a method to insert and extract data to and from the network. Access Routers at the boundary of the execution fabric establish connections to multiple periphery modules and create a torus to decrease the node distances. Our approach is scalable and ensures homogeneity among the compute elements in the NoC. We synthesized and evaluated the proposed enhancement in terms of power dissipation and area. Our results indicate that the impact of necessary alterations to the fabric is negligible and effects the data transfer between the fabric and the periphery only marginally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall performance of random early detection (RED) routers in the Internet is determined by the settings of their associated parameters. The non-availability of a functional relationship between the RED performance and its parameters makes it difficult to implement optimization techniques directly in order to optimize the RED parameters. In this paper, we formulate a generic optimization framework using a stochastically bounded delay metric to dynamically adapt the RED parameters. The constrained optimization problem thus formulated is solved using traditional nonlinear programming techniques. Here, we implement the barrier and penalty function approaches, respectively. We adopt a second-order nonlinear optimization framework and propose a novel four-timescale stochastic approximation algorithm to estimate the gradient and Hessian of the barrier and penalty objectives and update the RED parameters. A convergence analysis of the proposed algorithm is briefly sketched. We perform simulations to evaluate the performance of our algorithm with both barrier and penalty objectives and compare these with RED and a variant of it in the literature. We observe an improvement in performance using our proposed algorithm over RED, and the above variant of it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we consider a finite queue with its arrivals controlled by the random early detection algorithm. This is one of the most prominent congestion avoidance schemes in the Internet routers. The aggregate arrival stream from the population of transmission control protocol sources is locally considered stationary renewal or Markov modulated Poisson process with general packet length distribution. We study the exact dynamics of this queue and provide the stability and the rates of convergence to the stationary distribution and obtain the packet loss probability and the waiting time distribution. Then we extend these results to a two traffic class case with each arrival stream renewal. However, computing the performance indices for this system becomes computationally prohibitive. Thus, in the latter half of the article, we approximate the dynamics of the average queue length process asymptotically via an ordinary differential equation. We estimate the error term via a diffusion approximation. We use these results to obtain approximate transient and stationary performance of the system. Finally, we provide some computational examples to show the accuracy of these approximations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peer to peer networks are being used extensively nowadays for file sharing, video on demand and live streaming. For IPTV, delay deadlines are more stringent compared to file sharing. Coolstreaming was the first P2P IPTV system. In this paper, we model New Coolstreaming (newer version of Coolstreaming) via a queueing network. We use two time scale decomposition of Markov chains to compute the stationary distribution of number of peers and the expected number of substreams in the overlay which are not being received at the required rate due to parent overloading. We also characterize the end-to-end delay encountered by a video packet received by a user and originated at the server. Three factors contribute towards the delay. The first factor is the mean shortest path length between any two overlay peers in terms of overlay hops of the partnership graph which is shown to be O (log n) where n is the number of peers in the overlay. The second factor is the mean number of routers between any two overlay neighbours which is seen to be at most O (log N-I) where N-I is the number of routers in the internet. Third factor is the mean delay at a router in the internet. We provide an approximation of this mean delay E W]. Thus, the mean end to end delay in New Coolstreaming is shown to be upper bounded by O (log E N]) (log N-I) E (W)] where E N] is the mean number of peers at a channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing number of applications and processing units in modern Multiprocessor Systems-on-Chips (MPSoCs) come along with reduced time to market. Different IP cores can come from different vendors, and their trust levels are also different, but typically they use Network-on-Chip (NoC) as their communication infrastructure. An MPSoC can have multiple Trusted Execution Environments (TEEs). Apart from performance, power, and area research in the field of MPSoC, robust and secure system design is also gaining importance in the research community. To build a secure system, the designer must know beforehand all kinds of attack possibilities for the respective system (MPSoC). In this paper we survey the possible attack scenarios on present-day MPSoCs and investigate a new attack scenario, i.e., router attack targeted toward NoC architecture. We show the validity of this attack by analyzing different present-day NoC architectures and show that they are all vulnerable to this type of attack. By launching a router attack, an attacker can control the whole chip very easily, which makes it a very serious issue. Both routing tables and routing logic-based routers are vulnerable to such attacks. In this paper, we address attacks on routing tables. We propose different monitoring-based countermeasures against routing table-based router attack in an MPSoC having multiple TEEs. Synthesis results show that proposed countermeasures, viz. Runtime-monitor, Restart-monitor, Intermediate manager, and Auditor, occupy areas that are 26.6, 22, 0.2, and 12.2 % of a routing table-based router area. Apart from these, we propose Ejection address checker and Local monitoring module inside a router that cause 3.4 and 10.6 % increase of a router area, respectively. Simulation results are also given, which shows effectiveness of proposed monitoring-based countermeasures.