18 resultados para robotic palletising
em Indian Institute of Science - Bangalore - Índia
Resumo:
The Artificial Neural Networks (ANNs) are being used to solve a variety of problems in pattern recognition, robotic control, VLSI CAD and other areas. In most of these applications, a speedy response from the ANNs is imperative. However, ANNs comprise a large number of artificial neurons, and a massive interconnection network among them. Hence, implementation of these ANNs involves execution of computer-intensive operations. The usage of multiprocessor systems therefore becomes necessary. In this article, we have presented the implementation of ART1 and ART2 ANNs on ring and mesh architectures. The overall system design and implementation aspects are presented. The performance of the algorithm on ring, 2-dimensional mesh and n-dimensional mesh topologies is presented. The parallel algorithm presented for implementation of ART1 is not specific to any particular architecture. The parallel algorithm for ARTE is more suitable for a ring architecture.
Resumo:
[1] We have compared the spectral aerosol optical depth (AOD, tau lambda) and aerosol fine mode fraction (AFMF) of Collection 004 (C004) derived from Moderate-Resolution Imaging Spectroradiometer (MODIS) on board National Aeronautics and Space Administration's (NASA) Terra and Aqua platforms with that obtained from Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), India for the period 2001-2005. The spatially-averaged (0.5 degrees x 0.5 degrees centered at AERONET sunphotometer) MODIS Level-2 aerosol parameters (10 km at nadir) were compared with the temporally averaged AERONET-measured AOD (within +/- 30 minutes of MODIS overpass). We found that MODIS systematically overestimated AOD during the pre-monsoon season (March to June, known to be influenced by dust aerosols). The errors in AOD at 0.66 mu m were correlated with the apparent reflectance at 2.1 mu m (rho*(2.1)) which MODIS C004 uses to estimate the surface reflectance in the visible channels (rho(0.47) = rho*(2.1)/ 4, rho(0.66) = rho*(2.1)/ 2). The large errors in AOD (Delta tau(0.66) > 0.3) are found to be associated with the higher values of rho*(2.1) (0.18 to 0.25), where the uncertainty in the ratios of reflectance is large (Delta rho(0.66) +/- 0.04, Delta rho(0.47) +/- 0.02). This could have resulted in lower surface reflectance, higher aerosol path radiance and thus lead to overestimation in AOD. While MODIS-derived AFMF has binary distribution (1 or 0) with too low (AFMF < 0.2) during dust-loading period, and similar to 1 for the rest of the retrievals, AERONET showed range of values (0.4 to 0.9). The errors in tau(0.66) were also high in the scattering angle range 110 degrees - 140 degrees, where the optical effects of nonspherical dust particles are different from that of spherical particles.
Resumo:
We have compared the spectral aerosol optical depth (AOD) and aerosol fine mode fraction (AFMF) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) with those of Aerosol Robotic Network (AERONET) at Kanpur (26.45N, 80.35E), northern India for the pre-monsoon season (March to June, 2001-2005). We found that MODIS systematically overestimates AOD during pre-monsoon season (known to be influenced by dust transport from north-west of India). The errors in AOD were correlated with the MODIS top-of-atmosphere apparent surface reflectance in 2.1 mu m channel (rho*(2.1)). MODIS aerosol algorithm uses p*(2.1) to derive the surface reflectance in visible channels (rho(0.47), rho(0.66)) using an empirical mid IR-visible correlation (rho(0.47) = rho(2.1)/4, rho(0.66) = rho(2.1)/2). The large uncertainty in estimating surface reflectance in visible channels (Delta rho(0.66)+/- 0.04, Delta rho(0.47)+/- 0.02) at higher values of p*(2.1) (p*(2.1) > 0.18) leads to higher aerosol contribution in the total reflected radiance at top-of atmosphere to compensate for the reduced surface reflectance in visible channels and thus leads to overestimation of AOD. This was also reflected in the very low values of AFMF during pre-monsoon whose accuracy depends on the aerosol path radiance in 0.47 and 0.66 mu m channels and aerosol models. The errors in AOD were also high in the scattering angle range 110 degrees-140 degrees, where the effect of dust non-spherity on its optical properties is significant. The direct measurements of spectral surface reflectance are required over the Indo-Gangetic basin in order to validate the mid IR-visible relationship. MODIS aerosol models should also be modified to incorporate the effect of non-spherity of dust aerosols.
Resumo:
We have compared the total as well as fine mode aerosol optical depth (tau and tau(fine)) retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua (2001-2005) with the equivalent parameters derived by Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), northern India. MODIS Collection 005 (C005)-derived tau(0.55) was found to be in good agreement with the AERONET measurements. The tau(fine) and eta (tau(fine)/tau) were, however, biased low significantly in most matched cases. A new set of retrieval with the use of absorbing aerosol model (SSA similar to 0.87) with increased visible surface reflectance provided improved tau and tau(fine) at Kanpur. The new derivation of eta also compares well qualitatively with an independent set of in situ measurements of accumulation mass fraction over much of the southern India. This suggests that though MODIS land algorithm has limited information to derive size properties of aerosols over land, more accurate parameterization of aerosol and surface properties within the existing C005 algorithm may improve the accuracy of size-resolved aerosol optical properties. The results presented in this paper indicate that there is a need to reconsider the surface parameterization and assumed aerosol properties in MODIS C005 algorithm over the Indian region in order to retrieve more accurate aerosol optical and size properties, which are essential to quantify the impact of human-made aerosols on climate.
Resumo:
Belief revision systems aim at keeping a database consistent. They mostly concentrate on how to record and maintain dependencies. We propose an axiomatic system, called MFOT, as a solution to the problem of belief revision. MFOT has a set of proper axioms which selects a set of most plausible and consistent input beliefs. The proposed nonmonotonic inference rule further maintains consistency while generating the consequences of input beliefs. It also permits multiple property inheritance with exceptions. We have also examined some important properties of the proposed axiomatic system. We also propose a belief revision model that is object-centered. The relevance of such a model in maintaining the beliefs of a physician is examined.
Resumo:
Multiple UAVs are deployed to carry out a search and destroy mission in a bounded region. The UAVs have limited sensor range and can carry limited resources which reduce with use. The UAVs perform a search task to detect targets. When a target is detected which requires different type and quantities of resources to completely destroy, then a team of UAVs called as a coalition is formed to attack the target. The coalition members have to modify their route to attack the target, in the process, the search task is affected, as search and destroy tasks are coupled. The performance of the mission is a function of the search and the task allocation strategies. Therefore, for a given task allocation strategy, we need to devise search strategies that are efficient. In this paper, we propose three different search strategies namely; random search strategy, lanes based search strategy and grid based search strategy and analyze their performance through Monte-Carlo simulations. The results show that the grid based search strategy performs the best but with high information overhead.
Resumo:
Unmanned aerial vehicles (UAVs) have the potential to carry resources in support of search and prosecute operations. Often to completely prosecute a target, UAVs may have to simultaneously attack the target with various resources with different capacities. However, the UAVs are capable of carrying only limited resources in small quantities, hence, a group of UAVs (coalition) needs to be assigned that satisfies the target resource requirement. The assigned coalition must be such that it minimizes the target prosecution delay and the size of the coalition. The problem of forming coalitions is computationally intensive due to the combinatorial nature of the problem, but for real-time applications computationally cheap solutions are required. In this paper, we propose decentralized sub-optimal (polynomial time) and decentralized optimal coalition formation algorithms that generate coalitions for a single target with low computational complexity. We compare the performance of the proposed algorithms to that of a global optimal solution for which we need to solve a centralized combinatorial optimization problem. This problem is computationally intensive because the solution has to (a) provide a coalition for each target, (b) design a sequence in which targets need to be prosecuted, and (c) take into account reduction of UAV resources with usage. To solve this problem we use the Particle Swarm Optimization (PSO) technique. Through simulations, we study the performance of the proposed algorithms in terms of mission performance, complexity of the algorithms and the time taken to form the coalition. The simulation results show that the solution provided by the proposed algorithms is close to the global optimal solution and requires far less computational resources.
Active Vibration Suppression of One-dimensional Nonlinear Structures Using Optimal Dynamic Inversion
Resumo:
A flexible robot arm can be modeled as an Euler-Bernoulli beam which are infinite degrees of freedom (DOF) system. Proper control is needed to track the desired motion of a robotic arm. The infinite number of DOF of beams are reduced to finite number for controller implementation, which brings in error (due to their distributed nature). Therefore, to represent reality better distributed parameter systems (DPS) should be controlled using the systems partial differential equation (PDE) directly. In this paper, we propose to use a recently developed optimal dynamic inversion technique to design a controller to suppress nonlinear vibration of a beam. The method used in this paper determines control forces directly from the PDE model of the system. The formulation has better practical significance, because it leads to a closed form solution of the controller (hence avoids computational issues).
Resumo:
A force-torque sensor capable of accurate measurement of the three components of externally applied forces and moments is required for force control in robotic applications involving assembly operations. The goal in this paper is to design a Stewart platform based force torque sensor at a near-singular configuration sensitive to externally applied moments. In such a configuration, we show an enhanced mechanical amplification of leg forces and thereby higher sensitivity for the applied external moments. In other directions, the sensitivity will be that of a normal load sensor determined by the sensitivity of the sensing element and the associated electronic amplification, and all the six components of the force and torque can be sensed. In a sensor application, the friction, backlash and other non-linearities at the passive spherical joints of the Stewart platform will affect the measurements in unpredictable ways. In this sensor, we use flexural hinges at the leg interfaces of the base and platform of the sensor. The design dimensions of the flexure joints in the sensor have been arrived at using FEA. The sensor has been fabricated, assembled and instrumented. It has been calibrated for low level loads and is found to show linearity and marked sensitivity to moments about the three orthogonal X, Y and Z axes. This sensor is compatible for usage as a wrist sensor for a robot under development at ISRO Satellite Centre.
Resumo:
This paper addresses the problem of localizing the sources of contaminants spread in the environment, and mapping the boundary of the affected region using an innovative swarm intelligence based technique. Unlike most work in this area the algorithm is capable of localizing multiple sources simultaneously while also mapping the boundary of the contaminant spread. At the same time the algorithm is suitable for implementation using a mobile robotic sensor network. Two types of agents, called the source localization agents (or S-agents) and boundary mapping agents (or B-agents) are used for this purpose. The paper uses the basic glowworm swarm optimization (GSO) algorithm, which has been used only for multiple signal source localization, and modifies it considerably to make it suitable for both these tasks. This requires the definition of new behaviour patterns for the agents based on their terminal performance as well as interactions between them that helps the swarm to split into subgroups easily and identify contaminant sources as well as spread along the boundary to map its full length. Simulations results are given to demonstrate the efficacy of the algorithm.
Resumo:
This paper considers the problem of determining the time-optimal path of a fixed-wing Miniature Air Vehicle (MAV), in the presence of wind. The MAV, which is subject to a bounded turn rate, is required to eventually converge to a straight line starting from a known initial position and orientation. Earlier work in the literature uses Pontryagin's Minimum Principle (PMP) to solve this problem only for the no-wind case. In contrast, the present work uses a geometric approach to solve the problem completely in the presence of wind. In addition, it also shows how PMP can be used to partially solve the problem. Using a 6-DOF model of a MAV the generated optimal path is tracked by an autopilot consisting of proportional-integral-derivative (PID) controllers. The simulation results show the path generation and tracking for cases with steady and time-varying wind. Some issues on real-time path planning are also addressed.
Resumo:
This paper presents a strategy to determine the shortest path of a fixed-wing Miniature Air Vehicle (MAV), constrained by a bounded turning rate, to eventually fly along a given straight line, starting from an arbitrary but known initial position and orientation. Unlike the work available in the literature that solves the problem using the Pontryagin's Minimum Principle (PMP) the trajectory generation algorithm presented here considers a geometrical approach which is intuitive and easy to understand. This also computes the explicit solution for the length of the optimal path as a function of the initial configuration. Further, using a 6-DOF model of a MAV the generated optimal path is tracked by an autopilot consisting of proportional-integral-derivative (PID) controllers. The simulation results show the path generation and tracking for different cases.
Resumo:
To combine the advantages of both stability and optimality-based designs, a single network adaptive critic (SNAC) aided nonlinear dynamic inversion approach is presented in this paper. Here, the gains of a dynamic inversion controller are selected in such a way that the resulting controller behaves very close to a pre-synthesized SNAC controller in the output regulation sense. Because SNAC is based on optimal control theory, it makes the dynamic inversion controller operate nearly optimal. More important, it retains the two major benefits of dynamic inversion, namely (i) a closed-form expression of the controller and (ii) easy scalability to command tracking applications without knowing the reference commands a priori. An extended architecture is also presented in this paper that adapts online to system modeling and inversion errors, as well as reduced control effectiveness, thereby leading to enhanced robustness. The strengths of this hybrid method of applying SNAC to optimize an nonlinear dynamic inversion controller is demonstrated by considering a benchmark problem in robotics, that is, a two-link robotic manipulator system. Copyright (C) 2013 John Wiley & Sons, Ltd.
Resumo:
Robotic surgical tools used in minimally invasive surgeries (MIS) require miniaturized and reliable actuators for precise positioning and control of the end-effector. Miniature pneumatic artificial muscles (MPAMs) are a good choice due to their inert nature, high force to weight ratio, and fast actuation. In this paper, we present the development of miniaturized braided pneumatic muscles with an outer diameter of similar to 1.2 mm, a high contraction ratio of about 18%, and capable of providing a pull force in excess of 4 N at a supply pressure of 0.8 MPa. We present the details of the developed experimental setup, experimental data on contraction and force as a function of applied pressure, and characterization of the MPAM. We also present a simple kinematics and experimental data based model of the braided pneumatic muscle and show that the model predicts contraction in length to within 20% of the measured value. Finally, a robust controller for the MPAMs is developed and validated with experiments and it is shown that the MPAMs have a time constant of similar to 10 ms thereby making them suitable for actuating endoscopic and robotic surgical tools.