74 resultados para p21 ras

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatotoxicity due to overdose of the analgesic and antipyretic acetaminophen (A-PAIP) is a major cause of liver failure in adults. To better understand the contributions of different signaling pathways, the expression and role of Ras activation was evaluated after oral dosing of mice with APAP (400-500 mg/kg). Ras-guanosine triphosphate (GTP) is induced early and in an oxidative stress-dependent manner. The functional role of Ras activation was studied by a single intraperitoneal injection of the neutral sphingomyelinase and farnesyltransferase inhibitor (FTI) manumycin A (I mg/kg), which lowers induction of Ras-GTP and serum amounts of alanine aminotransferase (ALT). APAP dosing decreases hepatic glutathione amounts, which are not affected by manumycin A treatment. However, APAP-induced activation of c-Jun N-terminal kinase, which plays an important role, is reduced by manumycin A. Also, APAP-induced mitochondrial reactive oxygen species are reduced by manumycin A at a later time point during liver injury. Importantly, the induction of genes involved in the inflammatory response (including iNos, gp91phox, and Fasl) and serum amounts of proinflammatory cytokines interferon-gamma (IFN gamma) and tumor necrosis factor alpha, which increase greatly with APAP challenge, are suppressed with manumycin A. The FTI ctivity of manumycin A is most likely involved in reducing APAP-induced liver injury, because a specific neutral sphingomyelinase inhibitor, GW4869 (I mg/kg), did not show any hepatoprotective effect. Notably, a structurally distinct FTI, gliotoxin (I mg/kg), also inhibits Ras activation and reduces serum amounts of ALT and IFN-gamma after APAP dosing. Finally, histological analysis confirmed the hepatoprotective effect f manumycin A and gliotoxin during APAP-induced liver damage. Conclusion: This study identifies a key role for Ras activation and demonstrates the therapeutic efficacy of FTIs during APAP-induced liver injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Recent studies have implicated aberrant Notch signaling in breast cancers. Yet, relatively little is known about the pattern of expression of various components of the Notch pathway, or its mechanism of action. To better understand the role of the Notch pathway in breast cancer, we have undertaken a detailed expression analysis of various Notch receptors, their ligands, and downstream targets at different stages of breast cancer progression. Results: We report here that there is a general increase in the expression levels of Notch 1, 2, 4, Jagged1, Jagged2, and Delta-like 4 proteins in breast cancers, with simultaneous upregulation of multiple Notch receptors and ligands in a given cancer tissue. While Notch3 and Delta-like1 were undetectable in normal tissues, moderate to high expression was detected in several cancers. We detected the presence of active, cleaved Notch1, along with downstream targets of the Notch pathway, Hes1/Hes5, in similar to 75% of breast cancers, clearly indicating that in a large proportion of breast cancers Notch signaling is aberrantly activated. Furthermore, we detected cleaved Notch1 and Hes1/5 in early precursors of breast cancers - hyperplasia and ductal carcinoma in situ suggesting that aberrant Notch activation may be an early event in breast cancer progression. Mechanistically, while constitutively active Notch1 alone failed to transform immortalized breast cells, it synergized with the Ras/MAPK pathway to mediate transformation. This cooperation is reflected in vivo, as a subset of cleaved Notch positive tumors additionally expressed phopsho-Erk1/2 in the nuclei. Such cases exhibited high node positivity, suggesting that Notch-Ras cooperation may lead to poor prognosis. Conclusions: High level expression of Notch receptors and ligands, and its increased activation in several breast cancers and early precursors, places Notch signaling as a key player in breast cancer pathogenesis. Its cooperation with the Ras/MAPK pathway in transformation offers combined inhibition of the two pathways as a new modality for breast cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional Random access scan (RAS) for testing has lower test application time, low power dissipation, and low test data volume compared to standard serial scan chain based design In this paper, we present two cluster based techniques, namely, Serial Input Random Access Scan and Variable Word Length Random Access Scan to reduce test application time even further by exploiting the parallelism among the clusters and performing write operations on multiple bits Experimental results on benchmarks circuits show on an average 2-3 times speed up in test write time and average 60% reduction in write test data volume

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random Access Scan, which addresses individual flip-flops in a design using a memory array like row and column decoder architecture, has recently attracted widespread attention, due to its potential for lower test application time, test data volume and test power dissipation when compared to traditional Serial Scan. This is because typically only a very limited number of random ``care'' bits in a test response need be modified to create the next test vector. Unlike traditional scan, most flip-flops need not be updated. Test application efficiency can be further improved by organizing the access by word instead of by bit. In this paper we present a new decoder structure that takes advantage of basis vectors and linear algebra to further significantly optimize test application in RAS by performing the write operations on multiple bits consecutively. Simulations performed on benchmark circuits show an average of 2-3 times speed up in test write time compared to conventional RAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c(-/-), mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant activation of Notch and Ras pathways has been detected in breast cancers. A synergy between these two pathways has also been shown in breast cell transformation in culture. Yet, the clinical relevance of Notch-Ras cooperation in breast cancer progression remains unexplored. In this study, we show that coordinate hyperactivation of Notch1 and Ras/MAPK pathways in breast cancer patient specimens, as assessed by IHC for cleaved Notch1 and pErk1/2, respectively, correlated with early relapse to vital organs and poor overall survival. Interestingly, majority of such Notch1 (high)Erk(high) cases encompassed the highly aggressive triple-negative breast cancers (TNBC), and were enriched in stem cell markers. We further show that combinatorial inhibition of Notch1 and Ras/MAPK pathways, using a novel mAb against Notch1 and a MEK inhibitor, respectively, led to a significant reduction in proliferation and survival of breast cancer cells compared with individual inhibition. Combined inhibition also abrogated sphere-forming potential, and depleted the putative cancer stem-like cell subpopulation. Most importantly, combinatorial inhibition of Notch1 and Ras/MAPK pathways completely blocked tumor growth in a panel of breast cancer xenografts, including the TNBCs. Thus, our study identifies coordinate hyperactivation of Notch1 and Ras/MAPK pathways as novel biomarkers for poor breast cancer outcome. Furthermore, based on our preclinical data, we propose combinatorial targeting of these two pathways as a treatment strategy for highly aggressive breast cancers, particularly the TNBCs that currently lack any targeted therapeutic module. (C) 2014 AACR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Phosphorylation by protein kinases is a common event in many cellular processes. Further, many kinases perform specialized roles and are regulated by non-kinase domains tethered to kinase domain. Perturbation in the regulation of kinases leads to malignancy. We have identified and analysed putative protein kinases encoded in the genome of chimpanzee which is a close evolutionary relative of human. Result: The shared core biology between chimpanzee and human is characterized by many orthologous protein kinases which are involved in conserved pathways. Domain architectures specific to chimp/human kinases have been observed. Chimp kinases with unique domain architectures are characterized by deletion of one or more non-kinase domains in the human kinases. Interestingly, counterparts of some of the multi-domain human kinases in chimp are characterized by identical domain architectures but with kinase-like non-kinase domain. Remarkably, out of 587 chimpanzee kinases no human orthologue with greater than 95% sequence identity could be identified for 160 kinases. Variations in chimpanzee kinases compared to human kinases are brought about also by differences in functions of domains tethered to the catalytic kinase domain. For example, the heterodimer forming PB1 domain related to the fold of ubiquitin/Ras-binding domain is seen uniquely tethered to PKC-like chimpanzee kinase. Conclusion: Though the chimpanzee and human are evolutionary very close, there are chimpanzee kinases with no close counterpart in the human suggesting differences in their functions. This analysis provides a direction for experimental analysis of human and chimpanzee protein kinases in order to enhance our understanding on their specific biological roles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

M r = 326.3, monoclinic, P21, a --= 6.510 (2), b=8.432 (2), c= 15.114 (2),a, /~= 101.42 (3) ° , Z = 2, V= 813.15 A 3, D x = 1-33 Mg m -3, F(000) = 172, 2(Cu Ka) = 1.5418/~,, g(Cu Ka) = 0.906 mm -~, final R = 6.4% for 1924 observed counter reflections. The conformation about the glycosidic bond is syn [torsion angle C(6)-N(1)-C(1')-O(4')=-103.9(3)°]. The sugar pucker is C(2')-exo,C(3')-endo (3Tz). The conformation about the C(4')-C(5') bond is gauche-trans. An uncommon intermolecular hydrogen bond involving the ribose-ring oxygen O(1') and the base-nitrogen N(3) stabilizes the crystal structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C13H14N2OS, M r = 246, is monoclinic, P21/c, with a = 7.214(1), b = 8.935(5), c = 20.243 (6) A, fl =99.42 (2) °, V = 1304.83 ,~3, Z = 4, D m = 1.23, D x =1.25 Mg m -3, p(Mo Ka, 2 = 0.7107 A) = 0.232 mm -~,F(000) = 520. The structure was solved by direct methods and refined to an R value of 0.042 using 1127 intensity measurements. The C=C and C-N bond distances differ considerably from their normal values. An appreciable rotation [38.3(4) °] about the C=C bond is observed, the bond length being 1.414(5)A.This is due to the combination of push-pull and steric effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

l-Lysine acetate crystallises in the monoclinic space group P21 with a = 5.411 (1), b = 7.562(1), c= l2.635(2) Å and β = 91.7(1). The crystal structure was solved by direct methods and refined to an R value of 0.049 using the full matrix least squares method. The conformation and the aggregation of lysine molecules in the structure are similar to those found in the crystal structure of l-lysine l-aspartate. A conspicuous similarity between the crystal structures of l-arginine acetate and l-lysine acetate is that in both cases the strongly basic side chain, although having the largest pK value, interacts with the weakly acidic acetate group leaving the α-amino and the α-carboxylate groups to take part in head-to-tail sequences. These structures thus indicate that electrostatic effects are strongly modulated by other factors so as to give rise to head-to-tail sequences which have earlier been shown to be an almost universal feature of amino acid aggregation in the solid state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mr = 248, monoclinic, P21/n, a = 12.028 (2), b=7.168(2), c= 15.187(5)A, fl=91.88(2) °, Z= 4, V= 1308.6,~3, Din= 1.26, Dx= 1.263 Mgm -3, 2 (Cu Ka) = 1.5418 .A, g = 0.86 mm -1, F(000) = 536, T= 293 K. Final R = 5.6% for 2120 observed reflexions. Owing to the push-pull effect, the C=C bond distance is as long as 1.464 (2)/k with the twist angle about the bond 62.6.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CsHsN204, M r = 197.2, monoclinic, P21/e , a= 7.818 (2), b= 7.589 (2), e= 14.790 (2)A, t= 98.43 (2) °, V= 868.02/k 3, Z = 4, D m = 1.506 (3), Dx= 1.501Mgm -3, MoKa, 2=0.7107/~, #= 0-79 mm -1, F(000) = 408, T= 426 (1) K, final R = 0.0507 for 798 observed reflections [I_> 2e(/)]. The molecules are hydrogen bonded: N-H...O = 2.886 (3), N--H = 0.97 (7), H--O = 1.92 (6) A, N-- H...O angle = 175.5 (8) °.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

M r = 188.22, monoclinic, P21/n, a = 6.219 (2), b= 10.508 (2), c=7.339 (1)A, t= 107.64 (2) °, V= 457 ,/k 3, Z = 2, D m - - 1.360 (3), D x = 1.366 (2)Mgm -3, ~,(MoKa) = 0.7107/~, #= 0.053 mm -I, F(000) = 200, T= 293 K. Final R = 5.8% for 614 significant reflections. The molecule, which does not possess a centre of symmetry, occupies a crystallographic centre of symmetry because of the statistical enantiomeric and rotational disorder. Latticeenergy calculations, based on van der Waals attractive and repulsive potentials, clearly show minima at the observed disordered positions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

M r = 251.34, monoclinic, P21/n, a =14.626 (3), b= 7.144 (1), c= 11.996 (2)\AA \betat=90.03 (2) °, V= 1253.4 (6) \AA 3, Z = 4, Dm= 1.326 (3),Dx=1.331(3)gcm -3, MoKat, \lambda = 0.7107 )\AA , \mu=3.51 cm -3, F(000) = 528.0, T-- 293 K, R -- 3.5% for1455 significant reflections. Of particular interest is an intramolecular attractive interaction between the sulphur and oxygen atoms with an S...O distance of 2.658 (3)\AA, in which the oxygen atom appears to actas a nucleophile.