30 resultados para offsets

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In uplink orthogonal frequency division multiple access (OFDMA), large timing offsets (TO) and/or carrier frequency offsets (CFO) of other users with respect to a desired user can cause significant multiuser interference (MUI). In this letter, we analytically characterize the degradation in the average output signal-to-interference ratio (SIR) due to the combined effect of both TOs as well as CFOs in uplink OFDMA. Specifically, we derive closed-form expressions for the average SIR at the DFT output in the presence of large CFOs and TOs. The analyticalexpressions derived for the signal and various interference terms at the DFT output are used to devise an interference cancelling receiver to mitigate the effect of CFO/TO-induced interferences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In uplink OFDMA, carrier frequency offsets (CFO) and/or timing offsets (TO) of other users with respect to a desired user can cause multiuser interference (MUI). In practical uplink OFDMA systems (e.g., IEEE 802.16e standard), effect of this MUI is made acceptably small by requiring that frequency/timing alignment be achieved at the receiver with high precision (e.g., CFO must be within 1 % of the subcarrier spacing and TO must be within 1/8th of the cyclic prefix duration in IEEE 802.16e), which is realized using complex closed-loop frequency/timing correction between the transmitter and the receiver. An alternate open-loop approach to handle the MUI induced by large CFOs and TOs is to employ interference cancellation techniques at the receiver. In this paper, we first analytically characterize the degradation in the average output signal-to-interference ratio (SIR) due to the combined effect of large CFOs and TOs in uplink OFDMA. We then propose a parallel interference canceller (PIC) for the mitigation of interference due to CFOs and TOs in this system. We show that the proposed PIC effectively mitigates the performance loss due to CFO/TO induced interference in uplink OFDMA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a comparison between the sensitivity of SC-FDMA and OFDMA schemes to large carrier frequency offsets (CFO) and timing offsets (TO) of different users on the uplink. Our study shows the following observations: 1) In the ideal case of zero CFOs and TOs (i.e., perfect synchronization), the uncoded BER performance of SC-FDMA with frequency domain MMSE equalizer is better than that of OFDMA due to the inherent frequency diversity that is possible in SCFDMA. Also, because of inter-symbol interference in SC-FDMA, the performance of SC-FDMA with MMSE equalizer can be further improved by using low-complexity interference cancellation (IC) techniques. 2) In the presence of large CFOs and TOs, significant multiuser interference (MUI) gets introduced, and hence the performance of SC-FDMA with MMSE equalizer can get worse than that of OFDMA. However, the performance advantage of SC-FDMA with MMSE equalizer over OFDMA (due to the potential for frequency diversity benefit in SC-FDMA) can be restored by adopting multistage IC techniques, using the knowledge of CFOs and TOs of different users at the receiver

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In uplink orthogonal frequency division multiple access (OFDMA), carrier frequency offsets (CFO) and/or timing offsets (TO) of other users with respect to a desired user can cause significant multiuser interference (MUI). In this paper, we derive an analytical bit error rate (BER) expression that quantify the degradation in BER due to the combined effect of both CFOs and TOs in uplink OFDMA on Rician fading channels. Such an analytical BER derivation for uplink OFDMA with CFOs and TOs on Rician fading channels has not been reported so far. For the case of non-zero CFOs/TOs, we obtain an approximate BER expression involving a single integral. Analytical and simulation BER results are shown to match very well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN layers were directly grown on Ge substrate by plasma-assisted molecular beam epitaxy (PAMBE). The valence band offset (VBO) of wurtzite InN/Ge heterojunction is determined by X-ray photoemission spectroscopy (XPS). The valence band of Ge is found to be 0.18 +/- 0.04 eV above that of InN and a type-II heterojunction with a conduction band offset (CBO) of similar to 0.16 eV is found. The accurate determination of the VBO and CBO is important for the design of InN/Ge based electronic devices. (C) 2011 Elsevier B.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In orthogonal frequency-division multiple access (OFDMA) on the uplink, the carrier frequency offsets (CFOs) and/or timing offsets (TOs) of other users with respect to a desired user can cause multiuser interference (MUI). Analytically evaluating the effect of these CFO/TO-induced MUI on the bit error rate (BER) performance is of interest. In this paper, we analyze the BER performance of uplink OFDMA in the presence of CFOs and TOs on Rician fading channels. A multicluster multipath channel model that is typical in indoor/ultrawideband and underwater acoustic channels is considered. Analytical BER expressions that quantify the degradation in BER due to the combined effect of both CFOs and TOs in uplink OFDMA with M-state quadrature amplitude modulation (QAM) are derived. Analytical and simulation BER results are shown to match very well. The derived BER expressions are shown to accurately quantify the performance degradation due to nonzero CFOs and TOs, which can serve as a useful tool in OFDMA system design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Al:ZnO/Cu2SnS3 semiconductor heterojunction was fabricated. The structural and optical properties of the semiconductor materials were studied. The band offset at the Al:ZnO/Cu2SnS3 heterojunction was studied using X-ray photoelectron spectroscopy technique. From the measurement of the core level energies and valence band maximum of the constituent elements, the valence band offset was calculated to be -1.1 +/- 0.24 eV and the conduction band offset was 0.9 +/- 0.34 eV. The band alignment at the heterojunction was found to be of type-I. The study of Al:ZnO/Cu2SnS3 heterojunction is useful for solar cell applications. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu2SnS3 thins films were deposited onto In2O3: Sn coated soda lime glass substrates by spin coating technique. The films have been structurally characterized using x-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). The morphology of the films was studied using Field Emission Scanning Electron Microscopy (FESEM). The optical properties of the films were determined using UV-vis-NIR spectrophotometer. The electrical properties were measured using Hall effect measurements. The energy band offsets at the Cu2SnS3/In2O3: Sn interface were calculated using x-ray photoelectron spectroscopy (XPS). The valence band offset was found to be -3.4 +/- 0.24 eV. From the valence band offset value, the conduction band offset is calculated to be -1.95 +/- 0.34 eV. The energy band alignment indicates a type-II misaligned heterostructure formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu2SnS3 thins films were deposited onto In2O3: Sn coated soda lime glass substrates by spin coating technique. The films have been structurally characterized using x-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). The morphology of the films was studied using Field Emission Scanning Electron Microscopy (FESEM). The optical properties of the films were determined using UV-vis-NIR spectrophotometer. The electrical properties were measured using Hall effect measurements. The energy band offsets at the Cu2SnS3/In2O3: Sn interface were calculated using x-ray photoelectron spectroscopy (XPS). The valence band offset was found to be -3.4 +/- 0.24 eV. From the valence band offset value, the conduction band offset is calculated to be -1.95 +/- 0.34 eV. The energy band alignment indicates a type-II misaligned heterostructure formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synchronization issues pose a big challenge in cooperative communications. The benefits of cooperative diversity could be easily undone by improper synchronization. The problem arises because it would be difficult, from a complexity perspective, for multiple transmitting nodes to synchronize to a single receiver. For OFDM based systems, loss of performance due to imperfect carrier synchronization is severe, since it results in inter-carrier interference (ICI). The use of space-time/space-frequency codes from orthogonal designs are attractive for cooperative encoding. But orthogonal designs suffer from inter-symbol interference (ISI) due to the violation of quasi-static assumption, which can arise due to frequency- or time-selectivity of the channel. In this paper, we are concerned with combating the effects of i) ICI induced by carrier frequency offsets (CFO), and ii) ISI induced by frequency selectivity of the channel, in a cooperative communication scheme using space-frequency block coded (SFBC) OFDM. Specifically, we present an iterative interference cancellation (IC) algorithm to combat the ISI and ICI effects. The proposed algorithm could be applied to any orthogonal or quasi-orthogonal designs in cooperative SFBC OFDM schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Separated local field (SLF) spectroscopy is a powerful technique to measure heteronuclear dipolar couplings. The method provides site-specific dipolar couplings for oriented samples such as membrane proteins oriented in lipid bilayers and liquid crystals. A majority of the SLF techniques utilize the well-known Polarization Inversion Spin Exchange at Magic Angle (PISEMA) pulse scheme which employs spin exchange at the magic angle under Hartmann-Hahn match. Though PISEMA provides a relatively large scaling factor for the heteronuclear dipolar coupling and a better resolution along the dipolar dimension, it has a few shortcomings. One of the major problems with PISEMA is that the sequence is very much sensitive to proton carrier offset and the measured dipolar coupling changes dramatically with the change in the carrier frequency. The study presented here focuses on modified PISEMA sequences which are relatively insensitive to proton offsets over a large range. In the proposed sequences, the proton magnetization is cycled through two quadrants while the effective field is cycled through either two or four quadrants. The modified sequences have been named as 2(n)-SEMA where n represents the number of quadrants the effective field is cycled through. Experiments carried out on a liquid crystal and a single crystal of a model peptide demonstrate the usefulness of the modified sequences. A systematic study under various offsets and Hartmann-Hahn mismatch conditions has been carried out and the performance is compared with PISEMA under similar conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In uplink orthogonal frequency division multiple access (OFDMA) systems, multiuser interference (MUI) occurs due to different carrier frequency offsets (CFO) of different users at the receiver. In this paper, we present a minimum mean square error (MMSE) based approach to MUI cancellation in uplink OFDMA. We derive a recursion to approach the MMSE solution. We present a structure-wise and performance-wise comparison of this recursive MMSE solution with a linear PIC receiver as well as other detectors recently proposed in the literature. We show that the proposed recursive MMSE solution encompasses several known detectors in the literature as special cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work explores the temperature dependent transport behavior of n-InN nanodot/p-Si(100) heterojunction diodes. InN nanodot (ND) structures were grown on a 20 nm InN buffer layer on p-Si(100) substrates. These dots were found to be single crystalline and grown along 001] direction. The junction between these two materials exhibits a strong rectifying behavior at low temperatures. The average barrier height (BH) was determined to be 0.7 eV from current-voltage-temperature, capacitance-voltage, and flat band considerations. The band offsets derived from built-in potential were found to be Delta E-C=1.8 eV and Delta E-V=1.3 eV and are in close agreement with Anderson's model. (C) 2010 American Institute of Physics. doi:10.1063/1.3517489]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In uplink orthogonal frequency division multiple access (OFDMA) systems, multiuser interference (MUI) occurs due to different carrier frequency offsets (CFO) of different users at the receiver. In this paper, we present a multistage linear parallel interference cancellation (LPIC) approach to mitigate the effect of this MUI in uplink OFDMA. The proposed scheme first performs CFO compensation (in time domain), followed by K DFT operations (where K is the number of users) and multistage LPIC on these DFT outputs. We scale the MUI estimates by weights before cancellation and optimize these weights by maximizing the signal-to-interference ratio (SIR) at the output of the different stages of the LPIC. We derive closed-form expressions for these optimum weights. The proposed LPIC scheme is shown to effectively cancel the MUI caused by the other user CFOs in uplink OFDMA.