519 resultados para noble metal

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have probed the origin of SHG in copper nanoparticles by polarization-resolved hyper-Rayleigh scattering (HRS). Results obtained with various sizes of copper nanoparticles at four different wavelengths covering the wavelength range 738-1907 nm reveal that the origin of second harmonic generation (SHG) in these particles is purely dipolar in nature as long as the size (d) of the particles remains smaller compared to the wavelength (;.) of light ("small-particle limit"). However, contribution of the higher order multipoles coupled with retardation effect becomes apparent with an increase in the d/lambda ratio. We have identified the "small-particle limit" in the second harmonic generation from noble metal nanoparticles by evaluating the critical d/lambda ratio at which the retardation effect sets in the noble metal nanoparticles. We have found that the second-order nonlinear optical property of copper nanoparticles closely resembles that of gold, but not that of silver. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NOx, and unburned hydrocarbons-need to be fully converted to CO2, N-2, and H2O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al2O3 or SiO2 promoted by CeO2. However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce1-xMxO2-delta and Ce1-x-yTiyMxO2-delta (M = Pt, Pd, Rh; x = 0,01-0.02, delta approximate to x, y = 0.15-0.25) oxides in fluorite structure, In these oxide catalysts, pt(2+), Pd2+, or Rh3+ ions are substituted only to the extent of 1-2% of Ce4+ ion. Lower-valent noble metal ion substitution in CeO2 creates oxygen vacancies. Reducing molecules (CO, H-2, NH3) are adsorbed onto electron-deficient noble metal ions, while oxidizing (02, NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NOx reduction (with >80% N-2 selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO2 or Ce1-xTixO2 were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the more expensive Pt and Rh metals are not necessary in exhaust catalysts. We have also grown these nanocrystalline ionic catalysts on ceramic cordierite and have reproduced the results we observed in powder material on the honeycomb catalytic converter. Oxygen in a CeO2 lattice is activated by the substitution of Ti ion, as well as noble metal ions. Because this substitution creates longer Ti-O and M-O bonds relative to the average Ce-O bond within the lattice, the materials facilitate high oxygen storage and release. The interaction among M-0/Mn+, Ce4+/Ce3+, and Ti4+/Ti3+ redox couples leads to the promoting action of CeO2, activation of lattice oxygen and high oxygen storage capacity, metal support interaction, and high rates of catalytic activity in exhaust catalysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water-gas shift (WGS) reaction was carried out in the presence of Pd and Pt substituted nanocrystalline ceria catalysts synthesized by solution combustion technique. The catalysts were characterized by powder XRD and XPS. The noble metals were found to be present in ionic form substituted for the cerium atoms. The catalysts showed highactivity for the WGS reaction with high conversions below 250 degrees C. The products of reaction were only carbon dioxide and hydrogen, and no hydrocarbons were observed even in trace quantities. The reactions were carried out with different amounts of noble metal ion substitution and 2% Pt substituted ceria was found to be the best catalyst. The various possible mechanisms for the reaction were proposed and tested for their consistency with experimental data. The dual site mechanism best described the kinetics of the reaction and the corresponding rate parameters were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen storage/release (OSC) capacity is an important feature common to all three-way catalysts to combat harmful exhaust emissions. To understand the mechanism of improved OSC for doped CeO2, we undertook the structural investigation by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H-2-TPR (temperature-programmed hydrogen reduction) and density functional theoretical (DFT) calculations of transition-metal-, noble-metal-, and rare-earth (RE)-ion-substituted ceria. In this report, we present the relationship between the OSC and structural changes induced by the dopant ion in CeO2. Transition metal and noble metal ion substitution in ceria greatly enhances the reducibility of Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu, Pd, Pt, Ru), whereas rare-earth-ion-substituted Ce(1-x)A(x)O(2-delta) (A = La, Y) have very little effect in improving the OSC. Our simulated optimized structure shows deviation in cation oxygen bond length from ideal bond length of 2.34 angstrom (for CeO2). For example, our theoretical calculation for Ce28Mn4O62 structure shows that Mn-O bonds are in 4 + 2 coordination with average bond lengths of 2.0 and 3.06 angstrom respectively. Although the four short Mn-O bond lengths spans the bond distance region of Mn2O3, the other two Mn-O bonds are moved to longer distances. The dopant transition and noble metal ions also affects Ce coordination shell and results in the formation of longer Ce-O bonds as well. Thus longer cation oxygen bonds for both dopant and host ions results in enhanced synergistic reduction of the solid solution. With Pd ion substitution in Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu) further enhancement in OSC is observed in H-2-TPR. This effect is reflected in our model calculations by the presence of still longer bonds compared to the model without Pd ion doping. The synergistic effect is therefore due to enhanced reducibility of both dopant and host ion induced due to structural distortion of fluorite lattice in presence of dopant ion. For RE ions (RE = Y, La), our calculations show very little deviation of bonds lengths from ideal fluorite structure. The absence of longer Y-O/La-O and Ce-O bonds make the structure much less susceptible to reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water gas shift reaction was carried out over noble metal ion substituted nanocrystalline oxide catalysts with different supports. Spectroscopic studies of the catalysts before and after the reaction showed different surface phenomena occurring over the catalysts. Reaction mechanisms were proposed based upon the surface processes and intermediates formed. The dual site mechanism utilizing the oxide ion vacancies for water dissociation and metal ions for CO adsorption was proposed to describe the kinetics of the reaction over the reducible oxides like CeO2. A mechanism based on the interaction of adsorbed CO and the hydroxyl group was proposed for the reaction over ZrO2. A hybrid mechanism based on oxide ion vacancies and surface hydroxyl groups was proposed for the reaction over TiO2. The deactivation of the catalysts was also found to be support dependent. Kinetic models for both activation and deactivation were proposed. (C) 2010 American Institute of Chemical Engineers AIChE J, 56: 2662-2676, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO2 and TiO2 in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO2 was comparable and was higher than Pd and Pt ion substituted ZrO2. The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO2 supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO2 supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In last 40 years, catalysis for NO (x) removal from exhaust gas has received much attention to achieve pollution free environment. CeO(2) has been found to play a major role in the area of exhaust catalysis due to its unique redox properties. In last several years, we have been exploring an entirely new approach of dispersing noble metal ions in CeO(2) and TiO(2) for redox catalysis. We have extensively studied Ce(1-x) M (x) O(2-delta) (M = Pd, Pt, Rh), Ce(1-x-y) A (x) M (y) O(2-delta) (A = Ti, Zr, Sn, Fe; M = Pd, Pt) and Ti(1-x) M (x) O(2-delta) (M = Pd, Pt, Rh, Ru) catalysts for exhaust catalysis especially NO reduction and CO oxidation, structure-property relation and mechanism of catalytic reactions. In these catalysts, lower valent noble metal ion substitution in CeO(2) and TiO(2) creates noble metal ionic sites and oxide ion vacancy. NO gets molecularly adsorbed on noble metal ion site and dissociatively adsorbed on oxide ion vacancy site. Dissociative chemisorption of NO on oxide ion vacancy leads to preferential conversion of NO to N(2) instead of N(2)O over these catalysts. It has been demonstrated that these new generation noble metal ionic catalysts (NMIC) are much more catalytically active than conventional nano crystalline noble metal catalysts especially for NO reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In last 40 years, CeO2 has been found to play a major role in the area of auto exhaust catalysis due to its unique redox properties. Catalytic activity is enhanced when CeO2 is added to the noble metals supported Al2O3 catalysts. Reason for increase in catalytic activity is due to higher dispersion of noble metals in the form of ions in CeO2. This has led to the idea of substitution of noble metal ions in CeO2 lattice acting as adsorption sites instead of nanocrystalline noble metal particles on CeO2. In this article, a brief review of synthesis, structure and catalytic properties of noble metal ions dispersed on CeO2 resulting in noble metal ionic catalysts (NMIC) like Ce1-xMxO2-delta, Ce1-x-yTixMyO2-delta, Ce1-x-yZrxMyO2-delta, Ce1-x-ySnxMyO2-delta and Ce1-x-yFexMyO2-delta (M = Pt, Pd, Rh and Ru) are presented. Substitution of Ti, Zr, Sn and Fe in CeO2 increases oxygen storage capacities (OSC) due to structural distortion, whereas dispersion of noble metal ions in Ti, Zr, Sn and Fe substituted CeO2 supports increase both OSC and catalytic activities. Electronic interaction between noble metal ions and CeO2 in NMICs responsible for higher OSC and higher catalytic activities is discussed. (C) 2015 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past four decades, CeO2 has been recognized as an attractive material in the area of auto exhaust catalysis because of its unique redox properties. In the presence of CeO2, the catalytic activity of noble metals supported on Al2O3 is enhanced due to higher dispersion of noble metals in their ionic form. In the last few years, we have been exploring an entirely new approach of dispersing noble metal ions on CeO2 and TiO2 matrices for redox catalysis. In this study, the dispersion of noble metal ions by solution combustion as well as other methods over CeO2 and TiO2 resulting mainly in Ce1-xMxO2-delta, Ce1-x-yTixMyO2-delta, Ce1-x-ySnxMyO2-delta, Ce1-x-yFexMyO2-delta, Ce1-x-yZrxMyO2-delta and Ti1-xMxO2-delta (M = Pd, Pt, Rh and Ru) catalysts, the structure of these materials, their catalytic properties toward different types of catalysis, structure-property relationships and mechanisms of catalytic reactions are reviewed. In these catalysts, noble metal ions are incorporated into a substrate matrix to a certain limit in a solid solution form. Lower valent noble metal-ion substitution in CeO2 and TiO2 creates noble metal ionic sites and oxide ion vacancies that act as adsorption sites for redox catalysis. It has been demonstrated that these new generation noble metal ionic catalysts (NMIC) have been found to be catalytically more active than conventional nanocrystalline noble metal catalysts dispersed on oxide supports.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Noble metal ions like Pt(IV) and Pd(II) were impregnated on gamma-alumina and aerosol 300 silica surfaces. Reduction of these ions using ammonia borane in the solid state resulted in the formation of the respective metal nanoparticles embedded in BNHx polymer which is dispersed on the oxide support. Removal of the BNH polymer was accomplished by washing the samples repeatedly with methanol. In this process the polymer undergoes solvolysis to release H-2 accompanied by the formation of ammonium methoxy borate salt, which has been removed by repeated methanol washings. As a result, metal nanoparticles well dispersed on gamma-alumina and aerosol 300 silica were obtained. These samples have been characterized by a combination of techniques, including electron microscopy, powder X-ray diffraction, NMR spectroscopy and surface area analyser.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Noble metal substituted ionic catalysts were synthesized by solution combustion technique. The compounds were characterized by X-ray diffraction, FT-Raman spectroscopy, and X-ray photoelectron spectroscopy. Zirconia supported compounds crystallized in tetragonal phase. The solid solutions of ceria with zirconia crystallized in fluorite structure. The noble metals were substituted in ionic form.The water-gas shift reaction was carried out over the catalysts.Negligible conversions were observed with unsubstituted compounds. The substitution of a noble metal ion was found to enhance the reaction rate. Equilibrium conversion was obtained below 250 degrees C in the presence of Pt ion substituted compounds. The formation of Bronsted acid-Bronsted base pairs was proposed to explain the activity of zirconia catalysts. The effect of oxide ion vacancies on the reactions over substituted ceria-zirconia solid solutions was established. (c)2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanciparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50 ppm concentration] in aqueous dispersion was Studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is More than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanciparticles (425 mn) was noted till 0.45% BSA, beyond that a blue shift towards 410 urn was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400 rim. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir Curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried Out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalytic combustion of H-2 was carried out over combustion synthesized noble metal (Pd or Pt) ion-substituted CeO2 based catalysts using a feed stream that simulated exhaust gases from a fuel cell processor The catalysts showed a high activity for H-2-combustion and complete conversion was achieved below 200 C over all the catalysts when O-2 was used in a stoichiometric amount With higher amounts of O-2 the reaction rates Increased and complete conversions were possible below 100 C The reaction was also carried out over Pd-impregnated CeO2 The conversions of H-2 with stoichiometric amount of O-2 were found to be higher over Pd-substituted compound The mechanism of the reaction over noble metal-substituted compounds was proposed on the basis of X-ray photoelectron spectroscopy studies The redox couples between Ce and metal ions were established and a dual site redox mechanism was pi posed for the reaction (C) 2010 Elsevier B V All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epitaxial LaNiO3 metallic oxide thin films have been grown on c-axis oriented YBa2Cu3O7-delta thin films on LaAlO3 substrates by pulsed laser deposition technique and the interface formed between the two films has been examined by measuring the contact conductance of the same. The specific contact conductance of the interface measured using a modified four probe method was found to be 1.4 to 6 x 10(4) ohm(-1) cm(-2) at 77 K, There are indications that contact conductance can be brought closer to that obtained for noble metal-YBCO interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Noble metal such as Ag normally exists in an fcc crystal structure. However as the size of the material is decreased to nanometer lengthscales, a structural transformation from that of its bulk state can be expected with new atomic arrangements due to competition between internal packing and minimization of surface energy. In many previous studies, it has been shown that silver nanowires (AGNWs) grown inside anodic alumina (AAO) templates by ac or dc electrochemical deposition from silver salts or complexes, adopt fcc structure and below some critical diameter ∼ 20 nm they may acquire hcp structure at low temperature. This is, however, critically dependant on the nature of confinement, as AgNWs grown inside nanotube confinement with subnanometer diameter have been reported to have fcc structure. Hence the question of the crystal structure of metal nanowires under combined influence of confinement, temperature and deposition condition remains open. In this abstract we show that the alternative crystal structures of AGNWs at room temperature can be achieved with electrochemical growth processes under specific conditions determined by the deposition parameters and nature of confinement. We fabricated AgNWs of 4H hexagonal structure with diameters 30 – 80 nm inside polycarbonate (PC) templates with a modified dc electrodeposition technique, where the nanowires were grown at deposition potentials as low as 10 mV in 2 M silver nitrate solution[1]. We call this low-potential electrodeposition (LPED) since the electrodeposition process occurs at potential much less than the standard Nernst potential (770 mV) of silver. Two types of electrodes were used – stainless steel and sputtered thin Pt film, neither of which had any influence on the crystal structure of the nanowires. EDS elemental analysis showed the nanowires to consist only of silver. Although the precise atomic dynamics during the LPED process is unclear at present, we investigated this with HRTEM (high-resolution transmission electron microscopy) characterization of nanowires grown over various deposition times, as well as electrical conductivity measurements. These experiments indicate that nanowire growth does not occur through a three-dimensional diffusion controlled process, as proposed for conventional over-potential deposition, but follow a novel instantaneous linear growth mechanism. Further experiments showed that, (a) conventional electrochemical growth at a small over-potential in a 2 mM AgNO3 solution yields nanowires with expected fcc structure inside the same PC templates, and (2) no nanowire was observed under the LPED conditions inside hard AAO templates, indicating that LPED-growth process, and hcp structure of the corresponding nanowires depend on deposition parameters, as well as nature of confinement.