181 resultados para nitrogen form
em Indian Institute of Science - Bangalore - Índia
Resumo:
The X-ray analysis of the tetranuclear copper(II) complex formed from pyridoxic acid and 2,2′-dipyridylamine reveals a novel metal binding mode of pyridoxic acid as a multibridged tetradentate dianion. Here the pyridoxic acid moiety uses all possible sites except the pyridine nitrogen for metal coordination.
Resumo:
The structure of ordered phases that are formed when nitrogen is confined in slit graphite pores of height h is investigated using Monte Carlo simulations. The pore wall consists of a single-structured graphite sheet. Canonical ensemble simulations are carried out for temperatures ranging from 15 to 70Kwith layer density distributions, in-plane, out-of-plane angular distributions and snapshots evaluated at different temperatures. At each pore height the pore densities are obtained from independent grand ensemble simulations. At the smallest pore height studied (h)7 Å), where a single layer of molecules is accommodated at the center of the pore, the orientations are predominantly wall parallel, forming a biaxially incommensurate herringbone structure.Whentwo or more fluid layers are formed in the slit pore, the orientation of molecules adsorbed next to the wall can exist in either the herringbone or hexagonal phases. In all the multilayered cases studied, with the exception of the h ) 10 Å pore, where both wall layers form a commensurate herringbone structure, the low-temperature wall structures are incommensurate, possessing 6-fold hexagonal symmetry. The presence of the pinwheel structures, which were observed at low temperatures in the h ) 12 Å and h ) 14 Å pores, is determined by the pore height or the proximity and/or density of the adjacent fluid layers when inner layers are present.
Resumo:
We report the synthesis of thin films of B–C–N and C–N deposited by N+ ion-beam-assisted pulsed laser deposition (IBPLD) technique on glass substrates at different temperatures. We compare these films with the thin films of boron carbide synthesized by pulsed laser deposition without the assistance of ion-beam. Electron diffraction experiments in the transmission electron microscope shows that the vapor quenched regions of all films deposited at room temperature are amorphous. In addition, shown for the first time is the evidence of laser melting and subsequent rapid solidification of B4C melt in the form of micrometer- and submicrometer-size round particulates on the respective films. It is possible to amorphize B4C melt droplets of submicrometer sizes. Solidification morphologies of micrometer-size droplets show dispersion of nanocrystallites of B4C in amorphous matrix within the droplets. We were unable to synthesize cubic carbon nitride using the current technique. However, the formation of nanocrystalline turbostratic carbo- and boron carbo-nitrides were possible by IBPLD on substrate at elevated temperature and not at room temperature. Turbostraticity relaxes the lattice spacings locally in the nanometric hexagonal graphite in C–N film deposited at 600 °C leading to large broadening of diffraction rings.
Resumo:
The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed CON and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.
Resumo:
With the use of tensor analysis and the method of singular surfaces, an infinite system of equations can be derived to study the propagation of curved shocks of arbitrary strength in gas dynamics. The first three of these have been explicitly given here. This system is further reduced to one involving scalars only. The choice of dependent variables in the infinite system is quite important, it leads to coefficients free from singularities for all values of the shock strength.
Resumo:
Nitrogen plasma exposure (NPE) effects on indium doped bulk n-CdTe are reported here. Excellent rectifying characteristics of Au/n-CdTe Schottky diodes, with an increase in the barrier height, and large reverse breakdown voltages are observed after the plasma exposure. Surface damage is found to be absent in the plasma exposed samples. The breakdown mechanism of the heavily doped Schottky diodes is found to shift from the Zener to avalanche after the nitrogen plasma exposure, pointing to a change in the doping close to the surface which was also verified by C-V measurements. The thermal stability of the plasma exposure process is seen up to a temperature of 350 degrees C, thereby enabling the high temperature processing of the samples for device fabrication. The characteristics of the NPE diodes are stable over a year implying excellent diode quality. A plausible model based on Fermi level pinning by acceptor-like states created by plasma exposure is proposed to explain the observations.
Resumo:
The Taylor coefficients c and d of the EM form factor of the pion are constrained using analyticity, knowledge of the phase of the form factor in the time-like region, 4m(pi)(2) <= t <= t(in) and its value at one space-like point, using as input the (g - 2) of the muon. This is achieved using the technique of Lagrange multipliers, which gives a transparent expression for the corresponding bounds. We present a detailed study of the sensitivity of the bounds to the choice of time-like phase and errors present in the space-like data, taken from recent experiments. We find that our results constrain c stringently. We compare our results with those in the literature and find agreement with the chiral perturbation-theory results for c. We obtain d similar to O(10) GeV-6 when c is set to the chiral perturbation-theory values.
Resumo:
We have investigated structural transitions in Poly(dG-dC) and Poly(dG-Me5dC) in order to understand the exact role of cations in stabilizing left-handed helical structures in specific sequences andthe biological role, if any, of these structures. From a novel temperature dependent transition it has been shown that a minor fluctuation in Na+ concentration at ambient temperature can bring about Β to Ζ transition. Forthe first time, wehave observed a novel double transition in poly(dG-Me5dC) as the Na+ concentration is gradually increased. This suggests that a minor fluctuation in Na+ concentration in conjunction with methylation may transform small stretches of CG sequences from one conformational state to another. These stretches could probably serve as sites for regulation. Supercoiled formV DNA reconstituted from pBR322 and pßG plasmids have been studied as model systems, in order to understand the nature and role of left-handed helical conformation in natural sequences. A large portion of DNA in form V, obtained by reannealing the two complementary singlestranded circles is forced to adopt left-handed double helical structure due to topological constraints (Lk = 0). Binding studies with Z-DNA specific antibody and spectroscopic studies confirm the presence of left-handed Z-structure in the pßG and pßR322 form V DNA. Cobalt hexamine chloride, which induces Z-form in Poly(dG-dC) stabilizes the Z-conformation in form V DNA even in the non-alternating purine-pyrimidine sequences. A reverse effect is observed with ethidium bromide. Interestingly, both topoisomerase I and II (from wheat germ) act effectively on form V DNA to give rise to a species having an electrophoretic mobility on agarose gel similar to that of open circular (form II) DNA. Whether this molecule is formed as a result of the left-handed helical segments of form V DNA undergoing a transition to the right-handed B-form during the topoisomerase action remains to be solved.
Resumo:
Yellow form (I): Mr= 350.09, monoclinic, P2Jn, Z--4, a=9.525(1), b=14.762(1), c= 11.268(1),/t, fl= 107.82 (1) o , V= 1508.3 A 3 , Din(flotation in aqueous KI)= 1.539 (2), D x= 1.541 (2) g cm -3, #(Cu Ka, 2 = 1.5418 A) = 40.58 cm -~, F(000) = 712, T= 293 K, R = 8.8% for 2054 significant refections. Red form (II): Mr= 350.09, triclinic, Pi, Z=2, a=9.796(2), b= 10.750 (2), c= 7.421 (1)A, a= 95.29 (2), fl= 0108-2701/84/111901-05501.50 70.18 (1), y = 92-.76 (2) °, V= 731.9 A 3, Din(flotation in KI) = 1.585 (3), D x = 1.588 (3) g cm -3, ~t(Cu Ka, 2 = 1.5418/~) = 40.58 cm -1, F(000) = 356, T=293 K, R = 5.8% for 1866 significant reflections. There are no unusual bond distances or angles. The triazole and two phenyl rings are planar. On the basis of packing considerations the possibility of intermolecular interactions playing a role in the reactivity of the starting material is ruled out.
Resumo:
The structure and conformation of a second crystalline modification of 19-nortestosterone has been determined by X-ray methods. M r = 274, monoclinic P2 l, a=9.755(2), b= 11.467(3), c= 14.196(3)/L fl=101.07(2) ° , V=1558.4 (8) A 3, Z=4, Ox= I. 168 g cm -3, Mo Ka, 2 = 0.7107 ,/k, ~ = 0.80 cm -l, F(000) = 600, T= 300 K. R = 0.060 for 2158 observed reflections. The two molecules in the asymmetric unit show significant differences in the A-ring conformation from that of the previously reported form of the title compound [Precigoux, Busetta, Courseille & Hospital (1975). Acta Cryst. B31, 1527-1532]. The l a,2fl-half-chair conformation of the A ring increases its conformational freedom compared with testosterone.
Resumo:
Recently, reports have appeared which show structural variations in B-DNA and indicate deviations from a uniform helical structure. We report for the first time that these indications are also present in the B-form fibre diffraction patterns for the lithium salt of natural DNA. We have used an improved method of controlling the salt concentration in the fibres. Our results are based on the appearance and disappearance of meridional reflections on different layer lines depending upon the salt.
Resumo:
Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.
Resumo:
Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.