25 resultados para nanoimprint lithography

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report low-dimensional fabrication of technologically important giant dielectric material CaCu3Ti4O12 (CCTO) using soft electron beam lithographic technique. Sol-gel precursor solution of CCTO was prepared using inorganic metal nitrates and Ti-isopropoxide. Employing the prepared precursor solution and e-beam lithographically fabricated resist mask CCTO dots with similar to 200 nm characteristic dimension were fabricated on platinized Si (111) substrate. Phase formation, chemical purity and crystalline nature of fabricated low dimensional structures were investigated with X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED), respectively. Morphological investigations were carried out with the help of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This kind of solution based fabrication of patterned low-dimensional high dielectric architectures might get potential significance for cost-effective technological applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro- and nano-mechanical resonators have been proposed for a variety of applications ranging from mass sensing to signal processing. Often their actuation and/or detection involve external subsystems that are much larger than the resonator itself. We have designed a simple microcantilever resonator with integrated sensor and actuator, facilitating the integration of large arrays of resonators. This unique design can be manufactured with a low-cost fabrication process, involving just a single step of lithography. The bilayer cantilever of gold and silicon dioxide is used as piezoresistive sensor as well as thermal bimorph actuator. The ac current used for actuation and the dc current used for piezoresistive detection are separated in the frequency-domain using a bias-tee circuit configuration. The resonant response is measured by detecting the second harmonic of the actuation current using a lock-in amplifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patterning nanostructures on flexible substrates plays a key role in the emerging flexible electronics technology. The flexible electronic devices are inexpensive and can be conformed to any shape. The potential applications for such devices are sensors, displays, solar cells, RFID, high-density biochips, optoelectronics etc. E-beam lithography is established as a powerful tool for nanoscale fabrication, but its applicability on insulating flexible substrates is often limited because of surface charging effects. This paper presents the fabrication of nanostructures on insulating flexible substrates using low energy E-beam lithography along with metallic layers for charge dissipation. Nano Structures are patterned on different substrates of materials such as acetate and PET foils. The fabrication process parameters such as the proximity gap of exposure, the exposure dosage and developing conditions have been optimized for each substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the two kinds of forces that near-resonant light exerts on atoms the spontaneous force that is used for laser cooling, and the stimulated force that is used for coherent manipulation of atoms. We will discuss an experiment where laser cooling is used to collimate an atomic beam of sodium atoms, and the stimulated force within one period of a one-dimensional standing wave is used as a lens to focus the atoms to a narrow line about 20 nm wide. This kind of atom lithography is an example of the general field of atom optics in which light is used to manipulate atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose two-photon excitation-based light-sheet technique for nano-lithography. The system consists of 2 -configured cylindrical lens system with a common geometrical focus. Upon superposition, the phase-matched counter-propagating light-sheets result in the generation of identical and equi spaced nano-bump pattern. Study shows a feature size of as small as few tens of nanometers with a inter-bump distance of few hundred nanometers. This technique overcomes some of the limitations of existing nano-lithography techniques, thereby, may pave the way for mass-production of nano-structures. Potential applications can also be found in optical microscopy, plasmonics, and nano-electronics. Microsc. Res. Tech. 78:1-7, 2015. (c) 2014 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface of a soft elastic film becomes unstable and forms a self-organized undulating pattern because of adhesive interactions when it comes in contact proximity with a rigid surface. For a single film, the pattern length scale lambda, which is governed by the minimization of the elastic stored energy, gives lambda similar to 3h, where h is the film thickness. Based on a linear stability analysis and simulations of adhesion and debonding, we consider the contact instability of an elastic bilayer, which provides greater flexibility in the morphological control of interfacial instability. Unlike the case of a single film, the morphology of the contact instability patterns, debonding distance, and debonding force in a bilayer can be controlled in a nonlinear way by varying the thicknesses and shear moduli of the films. Interestingly, the pattern wavelength in a bilayer can be greatly increased or decreased compared to a single film when the adhesive contact is formed by the stiffer or the softer of the two films, respectively. In particular, lambda as small as 0.5h can be obtained. This indicates a new strategy for pattern miniaturization in elastic contact lithography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Design, fabrication and preliminary testing of a flat pump with millimetre thickness are described in this paper. The pump is entirely made of polymer materials barring the magnet and copper coils used for electromagnetic actuation. The fabrication is carried out using widely available microelectronic packaging machinery and techniques. Therefore, the fabrication of the pump is straightforward and inexpensive. Two types of prototypes are designed and built. One consists of copper coils that are etched on an epoxy plate and the other has wound insulated wire of 90 mu m diameter to serve as a coil. The overall size of the first pump is 25 mm x 25 mm x 3.6 mm including the 3.1 mm-thick NdFeB magnet of diameter 12 mm. It consists of a pump chamber of 20 mm x 20 mm x 0.8 mm with copper coils etched from a copper-clad epoxy plate using dry-film lithography and milled using a CNC milling machine, two passive valves and the pump-diaphragm made of Kapton film of 0.089 mm thickness. The second pump has an overall size of 35 mm x 35 mm x 4.4 mm including the magnet and the windings. A breadboard circuit and DC power supply are used to test the pump by applying an alternating square-wave voltage pulse. A water slug in a tube attached to the inlet is used to observe and measure the air-flow induced by the pump against atmospheric pressure. The maximum flow rate was found to be 15 ml/min for a voltage of 2.5 V and a current of 19 mA at 68 Hz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report development of gas microstrip detectors using thin film and lithography techniques. The detectors were tested for their performance for X-rays (5.9 keV) and a maximum gas gain of similar to 13,000 and best resolution of similar to 12% was obtained. Factors affecting gain and resolution were investigated. The detectors were tested for their one-dimensional position sensitivity. Meandering resistive strips were used for charge division method. A position resolution of 0.48 mm was obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular wires of charge transfer molecules were formed by co-evaporating the 7 7 8 8-Tetracyanoquinodimethane [TCNQ] (acceptor) and Tetrathiafulvalene [TTF] (donor) molecules across prefabricated metal electrodes. Molecular wires of TTF TCNQ were also formed by evaporating single complex of TTF:TCNQ across prefabricated metal electrodes The prefabricated metal electrodes were made using electron beam lithography on SiO2 and glass cover slip substrates. Even though TTF: TCNQ wires grown from both co-evaporation and evaporation techniques show semiconductor like behavior in temperature dependence of resistance they show different activation energies due the difference in stoichiometry of TTF and TCNQ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this paper is on designing useful compliant micro-mechanisms of high-aspect-ratio which can be microfabricated by the cost-effective wet etching of (110) orientation silicon (Si) wafers. Wet etching of (110) Si imposes constraints on the geometry of the realized mechanisms because it allows only etch-through in the form of slots parallel to the wafer's flat with a certain minimum length. In this paper, we incorporate this constraint in the topology optimization and obtain compliant designs that meet the specifications on the desired motion for given input forces. Using this design technique and wet etching, we show that we can realize high-aspect-ratio compliant micro-mechanisms. For a (110) Si wafer of 250 µm thickness, the minimum length of the etch opening to get a slot is found to be 866 µm. The minimum achievable width of the slot is limited by the resolution of the lithography process and this can be a very small value. This is studied by conducting trials with different mask layouts on a (110) Si wafer. These constraints are taken care of by using a suitable design parameterization rather than by imposing the constraints explicitly. Topology optimization, as is well known, gives designs using only the essential design specifications. In this work, we show that our technique also gives manufacturable mechanism designs along with lithography mask layouts. Some designs obtained are transferred to lithography masks and mechanisms are fabricated on (110) Si wafers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract | A growing interest in the research of chalcogenide glasses can be currently witnessed, which to a large extent is caused by newly opened fields of applications for these materials. Applications in the field of micro- and opto-electronics, xerography and lithography, acousto-optic and memory switching devices and detectors for medical imaging seem to be most remarkable. Accordingly, photo induced phenomena in chalcogenide glasses are attracting much interest. These phenomena can be found both in uniform thin films as well as multilayered films. Among amorphous multilayers, chalcogenide multilayers are attractive because of the potential it has for tailoring the optical properties. I will be presenting some basic idea of photoinduced effects followed by the diffusion mechanisms of Se, Sb and Bi in to As2S3 films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We fabricated a reflectance based sensor which relies on the diffraction pattern generated from a bio-microarray where an underlying thin film structure enhances the diffracted intensity from molecular layers. The zero order diffraction represents the background signal and the higher orders represent the phase difference between the array elements and the background. By taking the differential ratio of the first and zero order diffraction signals we get a quantitative measure of molecular binding while simultaneously rejecting common mode fluctuations. We improved the signal-to-noise ratio by an order of magnitude with this ratiometric approach compared to conventional single channel detection. In addition, we use a lithography based approach for fabricating microarrays which results in spot sizes as small as 5 micron diameter unlike the 100 micron spots from inkjet printing and is therefore capable of a high degree of multiplexing. We will describe the real-time measurement of adsorption of charged polymers and bulk refractometry using this technique. The lack of moving parts for point scanning of the microarray and the differential ratiometric measurements using diffracted orders from the same probe beam allows us to make real-time measurements in spite of noise arising from thermal or mechanical fluctuations in the fluid sample above the sensor surface. Further, the lack of moving parts leads to considerable simplification in the readout hardware permitting the use of this technique in compact point of care sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the last decade, there is a growing need for patterned biomolecules for various applications ranging from diagnostic devices to enabling fundamental biological studies with high throughput. Protein arrays facilitate the study of protein-protein, protein-drug or protein-DNA interactions as well as highly multiplexed immunosensors based on antibody-antigen recognition. Protein microarrays are typically fabricated using piezoelectric inkjet printing with resolution limit of similar to 70-100 mu m limiting the array density. A considerable amount of research has been done on patterning biomolecules using customised biocompatible photoresists. Here, a simple photolithographic process for fabricating protein microarrays on a commercially available diazo-naphthoquinone-novolac-positive tone photoresist functionalised with 3-aminopropyltriethoxysilane is presented. The authors demonstrate that proteins immobilised using this procedure retain their activity and therefore form functional microarrays with the array density limited only by the resolution of lithography, which is more than an order of magnitude compared with inkjet printing. The process described here may be useful in the integration of conventional semiconductor manufacturing processes with biomaterials relevant for the creation of next-generation bio-chips.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the fabrication of silver nanotriangle array using angle resolved nanosphere lithography and utilizing the same for enhancing fluorescence. The well established nanosphere lithography is modified by changing the angle of deposition between the nanosphere mask and the beam of silver being deposited resulting in nanotriangles of varying surface area and density. The 470 nm plasmon resonance wavelength of the substrate was determined using minimum reflectivity method which closely matches with excitation wavelength of the fluorophore. Ten times enhancement in fluorescence emission intensity is obtained from fluorescein isothiocyanate coated on top of silver nanotriangle array separated by a spacer layer of poly vinyl alcohol as compared to glass. The enhanced fluorescence emission is attributed to the increase in local field enhancement.