50 resultados para nag hammadi
em Indian Institute of Science - Bangalore - Índia
Resumo:
We have investigated the structure, magnetic and dielectric properties of the double perovskite oxides, R2NiMnO6 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y). We could refine powder X-ray diffraction patterns of all the phases on the basis of monoclinic (P2(1)/n) double perovskite structure where Ni and Mn atoms are ordered at 2c and 2d sites, respectively. All the phases are ferromagnetic insulators exhibiting relatively low dielectric loss and dielectric constants in the range 15-25. The ferromagnetic ordering temperature of the R2NiMnO6 series seems to correlate better with the radius of R3+ atoms than with the average Ni-O-Mn angle (phi) in the double perovskite structure. These results are consistent with all samples having Mn4+ and Ni2+ With minimal antisite disorder.
Resumo:
We report an efficient and fast solvothermal route to prepare highly crystalline monodispersed InP quantum dots. This solvothermal route, not only ensures inert atmosphere, which is strictly required for the synthesis of phase pure InP quantum dots but also allows a reaction temperature as high as 430 degrees C, which is otherwise impossible to achieve using a typical solution chemistry; the higher reaction temperature makes the reaction more facile. This method also has a judicious control over the size of the quantum dots and thus in tuning the bandgap.
Resumo:
A new analogue of graphene containing boron, carbon and nitrogen (BCN) has been obtained by the reaction of high-surface-area activated charcoal with a mixture of boric acid and urea at 900 degrees C. X-ray photoelectron spectroscopy and electron energy-loss spectroscopy reveal the composition to be close to BCN. The X-ray diffraction pattern, high-resolution electron microscopy images and Raman spectrum indicate the presence of graphite-type layers with low sheet-to-sheet registry. Atomic force microscopy reveals the sample to consist of two to three layers of BCN, as in a few-layer graphene. BCN exhibits more electrical resistivity than graphene, but weaker magnetic features. BCN exhibits a surface area of 2911 m(2)g(-1), which is the highest value known for a BxCyNz composition. It exhibits high propensity for adsorbing CO2 (approximate to 100 wt %) at 195 K and a hydrogen uptake of 2.6 wt % at 77 K. A first-principles pseudopotential-based DFT study shows the stable structure to consist of BN3 and NB3 motifs. The calculations also suggest the strongest CO2 adsorption to occur with a binding energy of 3.7 kJ mol(-1) compared with 2.0 kJ mol(-1) on graphene.
Resumo:
Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm.
Resumo:
It has been an outstanding problem that a semiconducting host in the bulk form can be doped to a large extent, while the same host in the nanocrystal form is found to resist any appreciable level of doping rather stubbornly, this problem being more acute in the wurtzite form compared to the zinc blende one. In contrast, our results based on the lattice parameter tuning in a ZnxCd1−xS alloy nanocrystal system achieves 7.5% Mn2+ doping in a wurtzite nanocrystal, such a concentration being substantially higher compared to earlier reports even for nanocrystal hosts with the “favorable” zinc-blende structure. These results prove a consequence of local strains due to a size mismatch between the dopant and the host that can be avoided by optimizing the composition of the alloyed host. Additionally, the present approach opens up a new route to dope such nanocrystals to a macroscopic extent as required for many applications. Photophysical studies show that the quantum efficiency per Mn2+ ion decreases exponentially with the average number of Mn2+ ions per nanocrystal; en route, a high quantum efficiency of 25% is achieved for a range of compositions.
Resumo:
Enthused by the fascinating properties of graphene, we have prepared graphene analogues of BN by a chemical method with a control on the number of layers. The method involves the reaction of boric acid with urea, wherein the relative proportions of the two have been varied over a wide range. Synthesis with a high proportion of urea yields a product with a majority of 1-4 layers. The surface area of BN increases progressively with the decreasing number of layers, and the high surface area BN exhibits high CO, adsorption, but negligible H, adsorption. Few-layer BN has been solubilized by interaction with Lewis bases. We have used first-principles simulations to determine structure, phonon dispersion, and elastic properties of BN with planar honeycomb lattice-based n-layer forms. We find that the mechanical stability of BN with respect to out-of-plane deformation is quite different from that of graphene, as evident in the dispersion of their flexural modes. BN is softer than graphene and exhibits signatures of long-range ionic interactions in its optical phonons. Finally, structures with different stacking sequences of BN have comparable energies, suggesting relative abundance of slip faults, stacking faults, and structural inhomogeneities in multilayer BN.
Resumo:
In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.
Resumo:
We describe an investigation of the structure and dielectric properties of MM'O-4 and MTiM'O-6 rutile-type oxides for M = Cr, Fe, Ga and M' = Nb. Ta and Sb. All the oxides adopt a disordered rutile structure (P4(2)/mnm) at ambient temperature. A partial ordered trirutile-type structure is confirmed for FeTaO4 from the low temperature (17 K) neutron diffraction studies While both the MM'O-4 oxides (CrTaO4 and FeTaO4) investigated show a normal dielectric property MTiM'O-6 oxides for M = Fe, Cr and M' = Nb/Ta/Sb display a distinct relaxor/relaxor-like response. Significantly the corresponding gallium analogs, GaTiNbO6 and GaTiTaO6, do not show a relaxor response at T<500K (C) 2010 Elsevier Inc All rights reserved
Resumo:
Internal structures of extraordinarily luminescent semiconductor nanoparticles are probed with photoelectron spectroscopy, establishing a gradient alloy structure as an essential ingredient for the observed phenomenon. Comparative photoluminescence lifetime measurements provide direct evidence for a minimization of nonradiative decay channels because of the removal of interfacial defects due to a progressive change in the lattice parameters in such graded structures, exhibiting a nearly single exponential decay Quantum mechanical, calculations suggest a differential extent of spatial collapse of the electron and the hole wave functions in a way that helps to enhance the photoluminescence efficiency, while at the same time increasing the lifetime of the excited state, as observed in the experiments.
Resumo:
We have investigated the structure and magnetic properties of the perovskite oxides of the formula La2Fe1-xMn2xCr1-xO6 (0 < x < 1.0). For 0 < x <= 0.5, the members adopt the orthorhombic (Pbnm) structure, where the transition metal atoms are disordered at the 4b sites and the MO6 (M = Fe, Mn, Cr) octahedra become increasingly distorted with increasing x. For 0.65 <= x < 1.0, the members adopt the rhombohedral (R-3c) structure that is similar to LaMnO3+delta (delta >= 0.1) where the MO6 octahedra are undistorted. While the magnetic properties of the latter series are largely similar to the parent LaMnO3+delta arising from the double-exchange (DE) between mixed valent Mn-III/Mn-IV, the magnetic properties of the orthorhombic members show a distinct (albeit weak) ferromagnetism (T-C similar to 200 K) that seems to arise from a Mn-III-mediated superexchange (SE) between Fe-III/Cr-III in the disordered perovskite structure containing Fe-III, Mn-III and Cr-III.
Resumo:
Core-shell CoFe2O4@BaTiO3 nanoparticles and nanotubes have been prepared using a combination of solution processing and high temperature calcination. Both the core-shell nanostructures exhibit magnetic and dielectric hysteresis at room temperature and magnetoelectric effect. The dielectric constant of both the nanocomposites decreases upon application of magnetic field. The core-shell nanoparticles exhibit 1.7% change in magnetocapacitance around 134 K at 1 T, while the core-shell nanotubes show a remarkable 4.5% change in magnetocapacitance around 310 K at 2 T.(C) 2010 American Institute of Physics. [doi:10.1063/1.3478231].
Resumo:
Only a small amount (<= 3.5 mol%) of Ge can be doped in Ga2O3, Ga1.4In0.6O3 and In2O3 by means of solid state reactions at 1400 degrees C. All these samples are optically transparent in the visible range, but Ge-doped Ga2O3 and Ga1.4In0.6O3 are insulating. Only Ge-doped In2O3 exhibits a significant decrease in resistivity, the resistivity decreasing further on thermal quenching and H-2 reduction.The resistivity of 2.7% Ge-doped In2O3 after H-2 reduction shows a metallic behavior, and a resistivity of similar to 1 m Omega cm at room temperature, comparable to that of Sn-doped In2O3. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Third-order nonlinear absorption and refraction coefficients of a few-layer boron carbon nitride (BCN) and reduced graphene oxide (RGO) suspensions have been measured at 3.2 eV in the femtosecond regime. Optical limiting behavior is exhibited by BCN as compared to saturable absorption in RGO. Nondegenerate time-resolved differential transmissions from BCN and RGO show different relaxation times. These differences in the optical nonlinearity and carrier dynamics are discussed in the light of semiconducting electronic band structure of BCN vis-a-vis the Dirac linear band structure of graphene. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The discovery of graphene has aroused great interest in the properties and phenomena exhibited by two-dimensional inorganic materials, especially when they comprise only a single, two or a few layers. Graphene-like MoS2 and WS2 have been prepared by chemical methods, and the materials have been characterized by electron microscopy, atomic force microscopy (AFM) and other methods. Boron nitride analogues of graphene have been obtained by a simple chemical procedure starting with boric acid and urea and have been characterized by various techniques that include surface area measurements. A new layered material with the composition BCN possessing a few layers and a large surface area discovered recently exhibits a large uptake of CO2.
Resumo:
We show that the characteristic Mn2+ d emission color from Mn2+-doped CdS nanocrystals can be tuned over as much as 40 nm, in contrast to what should be expected from such a nearly localized d-d transition. This is achieved surprisingly by a fine-tuning of the host particle diameter from 1.9 to 2.6 nm, thereby changing the overall emission color from red to yellow. Systematic experiments in conjunction with state-of-the-art ab initio calculations with full geometry optimization establish that Mn2+ ions residing at surface/subsurface regions have a distorted tetrahedral coordination resulting in a larger ligand field splitting. Consequently, these near-surface Mn2+ species exhibit a lower Mn2+ d emission energy, compared to those residing at the core of the nanocrystal with an undisturbed tetrahedral coordination. The origin of the tunability of the observed Mn2+ emission is the variation of emission contributions arising from Mn2+ doped at the core, subsurface, and surface of the host. Our findings provide a unique and easy method to identify the location of an emitting Mn2+ ion in the nanocrystal, which would be otherwise very difficult to decipher.