35 resultados para mineral sulfides

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The divergent role of microbes in the field of mineral processing starting from mining and beneficiation to efficient waste disposal has been well recognized now. The roles of various microorganisms and bioreagents in the beneficiation of minerals are illustrated in this paper. Various types of microorganisms useful in bringing about selective flotation and flocculation of various oxide and sulfide minerals are illustrated. Interfacial phenomena governing microbe-mineral interactions are discussed with reference to bacterial cell wall architecture, cell surface hydrophobicity, electrokinetic data, and adsorption behavior on various minerals. Applications of microbially induced mineral beneficiation are demonstrated with respect to beneficiation of iron ores, bauxite, limestone, and complex multimetal sulfides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioleaching of base metal sulfides, such as pyrite, chalcopyrite, and sphalerite, under the influence of applied direct current (DC) potentials is discussed. Contributions toward mineral dissolution from three effects, namely, galvanic, applied potential, and microbiological, are analyzed and compared. Sphalerite could be selectively bioleached in the presence of Thiobacillus ferrooxidans under an applied potential of -500 mV (SCE) from mixed sulfides containing sphalerite, pyrite, and chalcopyrite. Bacterial activity and growth were found to be promoted under electrobioleaching conditions. Probable mechanisms involved in the bioleaching of different sulfides under positive and negative applied potentials are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of Thiobacillus ferrooxidans, their attachment to sulfide minerals and detachment during bacterial leaching are discussed in this paper. Growth of the bacteria has been measured by cell count of the supernatants of the mineral suspensions while attachment to minerals and detachment were measured by periodic protein estimations for both the solid and liquid phases, Even in the absence of the nutrients, bacterial growth occurs and increases the available cell population during leaching; such growth was greater in sphalerite suspensions than in galena suspensions, The bacterial attachment studies suggest that more cells are attached onto galena mineral surface than to sphalerite surface. The mechanisms of bacterial attachment and detachment are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation processes of two sulfur polymers, poly(xylylene sulfide) (PXM) and poly(xylylene disulfide) (PXD), were investigated in parallel by direct pyrolysis mass spectrometry (DPMS) and flash pyrolysis GC/MS (Py-GC/MS). Thermogravimetric data showed that these polymers decompose with two separate steps in the temperature ranges of 250-280 and 600-650 degrees C, leaving a high amount of residue (about 50% at 800 degrees C). The pyrolysis products detected by DPMS in the first degradation step of PXM and PXD were terminated by three types of end groups, -CH3, -CH2SH, and -CH=S, originating from thermal cleavage reactions involving a series of homolytic chain scissions followed by hydrogen transfer reactions, generating several oligomers containing some intact xylylene sulfide repeating units. The presence of pyrolysis compounds containing some stilbene-like units in the first degradation step has also been observed. Their formation has been accounted for with a parallel cleavage involving the elimination of H2S from the PXM main chains. These unsaturated units can undergo cross-linking at higher temperatures, producing the high amount of char residue observed. The thermal degradation compounds detected by DPMS in the second decomposition step at about 600-650 degrees C were constituted of condensed aromatic molecules containing dihydrofenanthrene and fenanthrene units. These compounds might be generated from the polymer chains containing stilbene units, by isomerization and dehydrogenation reactions. The pyrolysis products obtained in the Py-GC/MS of PXM and PXD at 610 degrees C are almost identical. The relative abundance in the pyrolysate and the spectral properties of the main pyrolysis products were found to be in generally good agreement with those obtained by DPMS. Polycyclic aromatic hydrocarbons (PAHs) were also detected by Py-GC/MS but in minor amounts with respect to DPMS. This apparent discrepancy was due to the simultaneous detection of PAHs together with all pyrolysis products in the Py-GC/MS, whereas in DPMS they were detected in the second thermal degradation step without the greatest part of pyrolysis compounds generated in the first degradation step. The results obtained by DPMS and PSI-GC/MS experiments showed complementary data for the degradation of PXM and PXD and, therefore, allowed the unequivocal formulation of the thermal degradation mechanism for these sulfur-containing polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enumeration of adhered cells of Thiobacillus ferrooxidans on sulphide minerals through protein assay poses problems due to interference from dissolved mineral constituents. The manner in which sulphide minerals such as pyrite, chalcopyrite, sphalerite, arsenopyrite and pyrrhotite interfere with bacterial protein estimation is demonstrated. Such interferences can be minimised either through dilution or addition of H2O2 to the filtrate after hot alkaline digestion of the biotreated mineral samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative significance of corrosive and abrasive wear in ore grinding is discussed. Laboratory marked ball wear tests were carried out with magnetic taconite and quartzite under different conditions, namely dry, wet and in the presence of an organic liquid. The effect of different modes of aeration and of pyrrhotite addition on the ball wear using mild steel, high carbon low alloy steel and austenitic stainless steel balls was evaluated. Results indicate that abrasive wear plays a significant role in ore grinding in the absence of sulfides, and rheological properties of the ore slurry influenced such wear. The effect of oxygen on corrosive wear becomes increasingly felt in the presence of a sulfide mineral such as pyrrhotite. Wear characteristics of the three types of ball materials under different grinding conditions are illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary vanadium sulfides, MxVS2 (M = Fe, Co, Ni), with Image , were prepared and studied. The Image and Image series are isostructural with V5S8 and V3S4, respectively, while compounds with Image appear to have the hexagonal Cr2S3 structure. Structures of NiV2S4 and NiV4S8 were refined from powder X-ray diffraction intensities. Magnetic and electrical properties reveal that M ions in these sulfides exist in the divalent state having localized moments, while the vanadium 3 d electrons are itinerant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emf of the galvanic cell, Pt, Ni + NiO/(CaO) ZrO2/MS + MSO4, Ir, Pt, where M is calcium, strontium, or barium, has been measured in the temperature range 850 to 1100 K. From these measurements the Gibbs’ energy changes for the oxidation of sulfides of alkaline earth metals to their respective sulfates have been calculated. The results are compared with available thermodynamic data in the literature. The agreement varies from ±2 kJ for the strontium system to ±20 kJ in the case of barium. Trends in the stabilities of alkaline earth sulfates are discussed in relation to the properties of the cationic species involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary rare earth transition metal sulfides LnMS3 with Ln = La, Nd, and Gd, and M = V and Cr; as well as Ln = La and M = Mn, Fe, Co, and Ni have been prepared and characterized. The vanadium and chromium sulfides crystallize in a monoclinic layer structure isotypic with LaCrS3, while the other LnMS3 sulfides crystallize in a hexagonal structure. Chemical shifts of the metal K-absorption edge and XPS binding energies of core levels indicate that the transition metal is trivalent in the V and Cr sulfides, while it is divalent in the Mn, Fe, Co, and Ni sulfides. Electrical and magnetic properties of the sulfides are discussed in terms of their structures and the electronic configurations of the transition metal ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments on the leaching of copper from chalcopyrite mineral by the bacterium Thiobacillus ferrooxidans show that, in the presence of adequate amounts of sulphide, iron-grown bacteria preferentially oxidise sulphur in the ore (through direct attachment) rather than ferrous sulphate in solution. At 20% pulp density, the leaching initially takes place by a predominantly direct mechanism. The cell density in the liquid phase increases, but the Fe2+ is not oxidised. However, in the later stages when less solid substrate is available and the cell density becomes very high, the bacteria start oxidising Fe2+ in the liquid phase, thus contributing to the indirect mechanism of leaching. Contrary to expectations, the rate of leaching increased with increasing particle size in spite of the decreasing specific surface area. This has been found to be due to increasing attachment efficiency with increase in particle size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diaryl disulfides and diselenides undergo facile cleavage on treatment with rongalite (sodium hydroxymethanesulfinate) to generate the corresponding thiolate and selenolate species in Situ, which effect the ring opening of aziridines and epoxides in a regioselective manner. A simple, mild, cost-effective protocol has been developed to prepare beta-amino and beta-hydroxy sulfides and selenides in a one-pot operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solutions of potassium chloride (pH-buffered and 1-molat) equilibrated at 350°C with pyrrhotite, pyrite, and magnetite contained approximately 1 millimole of reduced sulfur and less than 0.1 millimole of oxidized sulfur per kilogram. Similar solutions equilibrated with pyrite, magnetite, and hematite contained approximately 1 millimole of reduced sulfur, but 3 to 6 millimoles of oxidized sulfur per kilogram. Both types of solutions contained less than 0.1 millimole of iron per kilogram at pH ≥ 6 and approximately 100 millimoles per kilogram at pH 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct contact mechanism in bioleaching implies prior mineral adhesion of Acidithiobacillus ferrooxidans and subsequent enzymatic attack.Prior bacterial adaptation to sulfide mineral substrates influences bacterial ferrous ion oxidation rates. It is highly beneficial to understand major biooxidation mechanisms with reference to solution- and mineral-grown cells in order to optimize bioleaching reactions. For A. ferrooxidans grown in the presence of solid substrates such as sulfur, pyrite and chalcopyrite, bacterial adhesion is required for its enzymatic machinery to come into close contact for mineral dissolution.But when grown in solution substrate such as ferrous ions and thiosulfate, such an adhesion machinery is not required for substrate utilization. Proteinaceous compounds were observed on the surface of sulfur-grown cells. Such an induction of relatively hydrophobic proteins and down regulation of exposed polysaccharides leads to changes in cell surface chemistry. Sulfur-grown and pyrite- and chalcopyrite-grown bacterial cells were found to be more efficient in the bioleaching of chalcopyrite than those grown in the presence of ferrous ions and thiosulfate. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thiobacillus ferrooxidans cells grown on sulfur, pyrite, and chalcopyrite exhibit greater hydrophobicity than ferrous ion-grown cells. The isoelectric points of sulfur-, pyrite-, and chalcopyrite-grown cells were observed to be at a pH higher than that for ferrous ion-grown cells. Microbe-mineral interactions result in change in the surface chemistry of the organism as well as that of the minerals with which it has interacted. Sulfur, pyrite, and chalcopyrite after interaction with T. ferrooxidans exhibited a significant shift in their isoelectric points from the initial values exhibited by uninteracted minerals. With antibodies raised against sulfur-grown T. ferrooxidans, pyrite- and chalcopyrite-grown cells showed immunoreactivity, whereas ferrous ion-grown cells failed to do so. Fourier transform infrared spectroscopy of sulfur-grown cells suggested that a proteinaceous new cell surface appendage synthesized in mineral-grown cells brings about adhesion to the solid mineral substrates. Such an appendage was found to be absent in ferrous ion-grown cells as it is not required during growth in liquid substrates.