529 resultados para metal complexation
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new hydroxy functionalized liquid crystalline (LC) polyazomethine has been synthesized by the solution polycondensation of a dialdehyde with a diamine. The polymer was characterized by IR, H-1-, and C-13-NMR spectroscopy. Studies on the liquid crystalline properties reveal the nematic mesomorphic behavior. This polymer functions as a polymeric chelate and forms a three-dimensional network structure through the metal complexation. Influence of various metals and their concentration on the liquid crystalline behavior of the network has been studied. Networks up to 30 mol % of the metal show LC phase transitions; above this the transitions are suppressed and the network behaves like an LC thermoset. (C) 1996 John Wiley & Sons, Inc.
Resumo:
This paper describes the synthesis, characterization and studies of dendrimers possessing an amino acid-metal complex as the core. Using Frechet-type polyaryl ether dendrons, L-tyrosine-metal (Zn-II and Co-II) complex cored dendrimers of 0-4 generations were synthesized. The metal complexation of the tyrosine unit at the focal point of these dendrons took place smoothly, in excellent yields, even though the sizes of the dendrons increase as the generations advance. Spectrophotometric titrations with CoII metal ion confirmed the formation of a 2 : 1 dendritic ligand to metal complex and the existence of a pseudotetrahedral geometry at the metal centre is also inferred. Cyclic voltammetric studies of dendrimer-Co-II complexes showed that while the electron transfer of Co-II to Co-I was facile for generations 0-2, such a process was difficult with generations 3 and 4, indicating a rigid encapsulation of the metal ion centre by proximal dendron groups. Further reduction of Co-I to Co-0 and the corresponding oxidation processes appear to be limited by adsorption at the surfaces of the electrodes.
Resumo:
In order to study the efficiencies of catalytic moieties within and across dendrimer generations, partially and fully functionalized dendrimers were synthesized. Poly(alkyl aryl ether) dendrimers from zero to three generations, presenting 3 to 24 peripheral functionalities, were utilized to prepare as many as 12 catalysts. The dendrimer peripheries were partially and fully functionalized with triphenylphosphine in the first instance. A rhodium(I) metal complexation was performed subsequently to afford multivalent dendritic catalysts, both within and across generations. Upon synthesis, the dendritic catalysts were tested in the hydrogenation of styrene, in a substrate-to-catalyst ratio of 1:0.001. Turn-over-numbers were evaluated for each catalyst, from which significant increases in the catalytic activities were identified for multivalent catalysts than monovalent catalysts, both within and across generations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The crown ethers, 2,3-benzo-1,4,7,10,13-pentaoxa-cyclopentadeca-2-ene and 2,3, ll,12-dibenzo-l,4,7,10,13,16-hexaoxscyclooctadeca-2,11-diene are incorporated into H,N'-ethylenebis(acetylacetoneimino) nickel(II) and copper(II), phenol, and β-naphthol by diazo coupling reactions. The selective nature of the coupling reaction has-been demonstrated by the isolation of both asymmetric mono- and symmetric bis(glyoxalarylcrownhydrazoneimino) metal(II) complexes. An interesting binuclear complex containing two intramolecularly rearranged (glyoxal-hydrazonearylimino) metal(II) groups joined by 18-crown-6 result8 when bis(arenediazonium)-18-crown-6 is coupled with the metal(I1) Schiff bases. The substituted ethers form cationic salts with NaClO4, KCNS, NH4CNS, 14g(CNS)2 and Ca(CNS)2. All the synthesised ethers exhibit ion selectivity sequence as K+ > Na+ and Ca2+ > Mg2+.
Resumo:
The crown ethers, 2,3-benzo-1,4,7,10,13-pentaoxa-cyclopentadeca-2-ene and 2,3, ll,12-dibenzo-l,4,7,10,13,16-hexaoxscyclooctadeca-2,11-diene are incorporated into H,N'-ethylenebis(acetylacetoneimino) nickel(II) and copper(II), phenol, and β-naphthol by diazo coupling reactions. The selective nature of the coupling reaction has-been demonstrated by the isolation of both asymmetric mono- and symmetric bis(glyoxalarylcrownhydrazoneimino) metal(II) complexes. An interesting binuclear complex containing two intramolecularly rearranged (glyoxal-hydrazonearylimino) metal(II) groups joined by 18-crown-6 result8 when bis(arenediazonium)-18-crown-6 is coupled with the metal(I1) Schiff bases. The substituted ethers form cationic salts with NaClO4, KCNS, NH4CNS, 14g(CNS)2 and Ca(CNS)2. All the synthesised ethers exhibit ion selectivity sequence as K+ > Na+ and Ca2+ > Mg2+.
Resumo:
Studies of the reaction of metal chlorides, MCl2 (M = Mn, Co, Ni, Cu, Zn) with PPHF at room temperature have shown that Mn, Co and Zn form the corresponding metal fluorides, MF2, while Ni and Cu form their dipyridine metal(II) dichloride complexes. Nickel and copper complexes further undergo fluorination and complexation by potassium hydrogen fluoride in PPHF to form KNiF3 and KCuF3.
Resumo:
Symmetrical and unsymmetrical diphosphinoamines of the type X(2)PN(R)PX(2) and X(2)PN(R)YY' offer vast scope for the synthesis of a variety of transition metal organometallic complexes. Diphosphinoamines can be converted into their dioxides which are also accessible from appropriate (chloro)phosphane oxide precursors. The diphosphazane dioxides form an interesting series of complexes with lanthanide and actinide elements. Structural and spectroscopic studies have been carried out on a wide range of transition metal complexes incorporating linear P-N-P ligands and judiciously functionalized cyclophosphazanes and cyclo-phosphazenes.
Resumo:
Molecular association of porphyrins and their metal derivatives has been recognized as one of the important properties for many of their biological functions. The association is classified into (i) self-aggregation, (ii) intermolecular association and (iii) intramolecular association. The presence of metal ions in the porphyrin cavity is shown to alter the magnitudes of binding constants and thermodynamic parameters of complexation. The interaction between the porphyrin unit and the acceptor is described in terms of π-π interaction. The manifestation of charge transfer states both in the ground and excited states of these complexes is shown to influence the rates of excited state electron transfer reactions. Owing to paucity of crystal structure data, the time-averaged geometries of many of these complexes have been derived from magnetic resonance data.
Resumo:
Several metal complexes of three different functionalized salen derivatives have been synthesized. The salens differ in terms of the electrostatic character and the location of the charges. The interactions of such complexes with DNA were first investigated in detail by UV−vis absorption titrimetry. It appears that the DNA binding by most of these compounds is primarily due to a combination of electrostatic and other modes of interactions. The melting temperatures of DNA in the presence of various metal complexes were higher than that of the pure DNA. The presence of additional charge on the central metal ion core in the complex, however, alters the nature of binding. Bis-cationic salen complexes containing central Ni(II) or Mn(III) were found to induce DNA strand scission, especially in the presence of co-oxidant as revealed by plasmid DNA cleavage assay and also on the basis of the autoradiogram obtained from their respective high-resolution sequencing gels. Modest base selectivity was observed in the DNA cleavage reactions. Comparisons of the linearized and supercoiled forms of DNA in the metal complex-mediated cleavage reactions reveal that the supercoiled forms are more susceptible to DNA scission. Under suitable conditions, the DNA cleavage reactions can be induced either by preformed metal complexes or by in situ complexation of the ligand in the presence of the appropriate metal ion. Also revealed was the fact that the analogous complexes containing Cu(II) or Cr(III) did not effect any DNA strand scission under comparable conditions. Salens with pendant negative charges on either side of the precursor salicylaldehyde or ethylenediamine fragments did not bind with DNA. Similarly, metallosalen complexes with net anionic character also failed to induce any DNA modification activities.
Resumo:
Ligational behaviour of (E)-2-amino-N'-1-(2-hydroxyphenyl)ethylidene]benzohydrazide (Aheb) towards later 3d metal ionscopper(II), cobalt(II), manganese(II), zinc(II), cadmium(II) and nickel(IV)] has been studied. Their structures have been elucidated on the basis of spectral (IR, H-1 NMR, UV-Vis, EPR and FAB-mass), elemental analyses, conductance measurements, magnetic moments, and thermal studies. During complexation Ni(II) ion has got oxidized to Ni(IV). The changes in the bond parameters of the ligand on complexation has been discussed by comparing the crystal structure of the ligand with that of its Ni(IV) complex. The X-ray single crystal analysis of Ni(aheb)(2)]Cl-2 center dot 4H(2)O has confirmed an octahedral geometry around the metal ion. EPR spectra of the Cu(II) complex in polycrystalline state at room (300 K) and liquid nitrogen temperature (77 K) were recorded and their salient features are reported. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The electron spin resonance absorption in the synthetic metal polyaniline (PANI) doped with PTSA and its blend with poly(methylmethacrylate) (PMMA) is investigated in the temperature range between 4.2 and 300 K. The observed line shape follows Dyson's theory for a thick metallic plate with slowly diffusing magnetic dipoles. At low temperatures the line shape become symmetric and Lorentzian when the sample dimensions are small in comparison with the skin depth. The temperature dependence of electron spin relaxation time is discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
We investigate the evolution of the electronic structure across the insulator-metal transition in NiS2-xSex with changing composition, but in the absence of any structural or magnetic changes. A comparison of the inverse photoemission spectra with band-structure calculations establishes the importance of correlation effects in these systems. Systematic changes in the spectral distribution establish the persistence of the upper Hubbard band well into the metallic regime, with the insulator-to-metal transition being driven by a transfer of spectral weight from the Hubbard band to states close to the Fermi energy.
Resumo:
Silver/metal hydride (Ag/MH) cells of about 1 Ah capacity have been fabricated and their discharge characteristics at different rates of discharge, faradaic efficiency, cycle life and a.c. impedance have been evaluated. These cells comprise metal-hydride electrodes prepared by employing similar to 60 mu m powder of an AB(2)-Laves phase alloy of nominal composition Zr0.5Ti0.5V0.6Cr0.2Ni1.2 with PTFE binder on a nickel-mesh substrate as the negative plates and commercial-grade silver electrodes as the positive plates. The cells are positive limited and exhibit two distinct voltage plateaus characteristic of two-step reduction of AgO to Ag during their low rates of discharge between C/20 and C/10. This feature is, however, absent when the cells are discharged at C/5 rate. On charging the cells to 100% of their capacity, the faradaic efficiency is found to be 100%. The impedance of the Ag/MH cell is essentially due to the impedance of the silver electrodes, since MH electrodes offer negligible impedance. The cells may be subjected to a large number of charge-discharge cycles with little deterioration.
Resumo:
We report the direct observation of electrochemical potential and local transport field variations near scatterers like grain boundaries, triple points, and voids in thin platinum films studied by scanning tunneling potentiometry. The field is highest at a void, followed by a triple point and a grain boundary. The local transport field near a void can even be four orders of magnitude higher than the macroscopic field, indicating that the void is the most likely place for an electromigration induced failure. The field build up for a particular type of scatterer depends on the grain connectivity. We estimate an average grain boundary reflection coefficient for the film from the temperature dependence of its resistivity.
Resumo:
Magnetic atoms at surfaces are a rich model system for solid-state magnetic bits exhibiting either classical(1,2) or quantum(3,4) behaviour. Individual atoms, however, are difficult to arrange in regular patterns(1-5). Moreover, their magnetic properties are dominated by interaction with the substrate, which, as in the case of Kondo systems, often leads to a decrease or quench of their local magnetic moment(6,7). Here, we show that the supramolecular assembly of Fe and 1,4-benzenedicarboxylic acid molecules on a Cu surface results in ordered arrays of high-spin mononuclear Fe centres on a 1.5nm square grid. Lateral coordination with the molecular ligands yields unsaturated yet stable coordination bonds, which enable chemical modification of the electronic and magnetic properties of the Fe atoms independently from the substrate. The easy magnetization direction of the Fe centres can be switched by oxygen adsorption, thus opening a way to control the magnetic anisotropy in supramolecular layers akin to that used in metallic thin films.