47 resultados para lung tumor

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A computational framework for modeling the respiratory motion of lung tumors provides a 4D parametric representation that tracks, analyzes, and models movement to provide more accurate guidance in the planning and delivery of lung tumor radiotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A human primary lung carcinoma cell line (HPL-R1) established from the tumor biopsy of a lung cancer patient, lacking in cytochrome P1-450 [aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH)], was cloned and used to obtain variants deficient in the expression of thymidine-kinase via treatment with 5-bromo-2'-deoxyuridine, and selection for drug resistance phenotype. The variant cell line, precharacterized for thymidine kinase negative phenotype, was transfected with the thymidine kinase gene bearing p R-tk and px1-tk plasmids. Transfections from both the plasmids, demonstrated a frequency of 5.5 X 10(-5). The transfectants showed a 76-100% retention of the transferred phenotype. These data suggest that transfection in variant human cells can approach significant levels of stability observed with rodent cell recipients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present investigation, a Schiff base N'(1),N'(3)-bis(Z)-(2-hydroxynapthyl)methylidene]benzene-1,3-dicarbod ihydrazide (L-1) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized as novel photosensitizing agents for photodynamic therapy (PDT). The interaction of these complexes with calf thymus DNA (CT DNA) has been explored using absorption, thermal denaturation and viscometric studies. The experimental results revealed that Co(II) and Ni(II) complexes on binding to CT DNA imply a covalent mode, most possibly involving guanine N7 nitrogen of DNA, with an intrinsic binding constant K-b of 4.5 x 10(4) M-1 and 4.2 x 10(4) M-1, respectively. However, interestingly, the Cu(II) complex is involved in the surface binding to minor groove via phosphate backbone of DNA double helix with an intrinsic binding constant K-b of 5.7 x 10(4) M-1. The Co(II), Ni(II) and Cu(II) complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to UV-visible light of 365 nm, through O-1(2) generation with quantum yields of 0.28, 0.25 and 0.30, respectively. Further, these complexes are cytotoxic in A549 lung cancer cells, showing an enhancement of cytotoxicity upon light irradiation. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Increased incidence of lung cancer among pulmonary tuberculosis patients suggests mycobacteria-induced tumorigenic response in the host. The alveolar epithelial cells, candidate cells that form lung adenocarcinoma, constitute a niche for mycobacterial replication and infection. We thus explored the possible mechanism of M. bovis Bacillus Calmette-Guerin (BCG)-assisted tumorigenicity in type II epithelial cells, human lung adenocarcinoma A549 and other cancer cells. Methods: Cancer cell lines originating from lung, colon, bladder, liver, breast, skin and cervix were treated with tumor necrosis factor (TNF)-alpha in presence or absence of BCG infection. p53, COP1 and sonic hedgehog (SHH) signaling markers were determined by immunoblotting and luciferase assays, and quantitative real time PCR was done for p53-responsive pro-apoptotic genes and SHH signaling markers. MTT assays and Annexin V staining were utilized to study apoptosis. Gain-and loss-of-function approaches were used to investigate the role for SHH and COP1 signaling during apoptosis. A549 xenografted mice were used to validate the contribution of BCG during TNF-alpha treatment. Results: Here, we show that BCG inhibits TNF-alpha-mediated apoptosis in A549 cells via downregulation of p53 expression. Substantiating this observation, BCG rescued A549 xenografts from TNF-alpha-mediated tumor clearance in nude mice. Furthermore, activation of SHH signaling by BCG induced the expression of an E3 ubiquitin ligase, COP1. SHH-driven COP1 targeted p53, thereby facilitating downregulation of p53-responsive pro-apoptotic genes and inhibition of apoptosis. Similar effects of BCG could be shown for HCT116, T24, MNT-1, HepG2 and HELA cells but not for HCT116 p53(-/-) and MDA-MB-231 cells. Conclusion: Our results not only highlight possible explanations for the coexistence of pulmonary tuberculosis and lung cancer but also address probable reasons for failure of BCG immunotherapy of cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Vascular endothelial growth factor (VEGF) is known to play a major role in angiogenesis. A soluble form of Flt-1, a VEGF receptor, is potentially useful as an antagonist of VEGF, and accumulating evidence suggests the applicability of sFlt-1 in tumor suppression. In the present study, we have developed and tested strategies targeted specifically to VEGF for the treatment of ascites formation.Methods As an initial strategy, we produced recombinant sFLT-1 in the baculovirus expression system and used it as a trap to sequester VEGF in the murine ascites carcinoma model. The effect of the treatment on the weight of the animal, cell number, ascites volume and proliferating endothelial cells was studied. The second strategy involved, producing Ehrlich ascites tumor (EAT) cells stably transfected with vectors carrying cDNA encoding truncated form of Flt-1 and using these cells to inhibit ascites tumors in a nude mouse model. Results The sFLT-1 produced by the baculovirus system showed potent antiangiogenic activity as assessed by rat cornea and tube formation assay. sFLT-1 treatment resulted in reduced peritoneal angiogenesis with a concomitant decrease in tumor cell number, volume of ascites, amount of free VEGF and the number of invasive tumor cells as assayed by CD31 staining. EAT cells stably transfected with truncated form of Flt-1 also effectively reduced the tumor burden in nude mice transplanted with these cells, and demonstrated a reduction in ascites formation and peritoneal angiogenesis. Conclusions The inhibition of peritoneal angiogenesis and tumor growth by sequestering VEGF with either sFlt-1 gene expression by recombinant EAT cells or by direct sFLT-1 protein therapy is shown to comprise a potential therapy. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat lung microsomes were shown to �-hydroxylate acyclic monoterpene alcohols in the presence of NADPH and O2. NADH could neither support hydroxylation efficiently nor did it show synergistic effect. The hydroxylase activity was greater in microsomes prepared from β-naphthoflavone (BNF)-treated rats than from phenobarbital (PB)-treated or control microsomal preparations. Hydroxylation was specific to the C-8 position in geraniol and has a pH optimum of 7.8. The inhibition of the hydroxylase activity by SKF-525A, CO, N-ethylmaleimide, ellipticine, α-naphthoflavone, cyt. Image and p-CMB indicated the involvement of the cyt. P-450 system. However, NaN3 stimulated the hydroxylase activity to a significant level. Rat kidney microsomes were also capable of �-hydroxylating geraniol although the activity was lower than that observed with lungs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monoterpene cyclic ether, cineole (l,8-cineole, I) also known as eucalyptol, is a component of many essential oils and is widely distributed in nature. It is extensively used in pharmaceutical preparations for external application and also as a nasal spray. It was reported earlier that cineole when administered to sheep may be largely oxidized in the system (Scheline 1978). However the mode of metabolism of cineole is not known. Hence the present study was undertaken to investigate the metabolic fate of this ubiquitous terpenoid following its administration to rats by gastric intubation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat lung microsomes were shown to ω-hydroxylate acyclic monoterpene alcohols in the presence of NADPH and O2. NADH could neither support hydroxylation efficiently nor did it show synergistic effect. The hydroxylase activity was greater in microsomes prepared from β-naphthoflavone (BNF)-treated rats than from phenobarbital (PB)-treated or control microsomal preparations. Hydroxylation was specific to the C-8 position in geraniol and has a pH optimum of 7.8. The inhibition of the hydroxylase activity by SKF-525A, CO, N-ethylmaleimide, ellipticine, α-naphthoflavone, cyt. Image and p-CMB indicated the involvement of the cyt. P-450 system. However, NaN3 stimulated the hydroxylase activity to a significant level. Rat kidney microsomes were also capable of ω-hydroxylating geraniol although the activity was lower than that observed with lungs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Metabolites isolated from the urine of rats after oral administration of geraniol (I) were: geranic acid (II), 3-hydroxy-citronellic acid (III), 8-hydroxy-geraniol (IV), 8-carboxy-geraniol (V) and Hildebrandt acid (VI). 2. Metabolites isolated from urine of rats after oral administration of linalool (VII) were 8-hydroxy-linalool (VIII) and 8-carboxy-linalool (IX). 3. After three days of feeding rats with either geraniol or linalool, liver-microsomal cytochrome P-450 was increased. Both NADH- and NADPH-cytochrome c reductase activities were not significantly changed during the six days of treatment. 4. Oral administration of these two terpenoids did not affect any of the lung-microsomal parameters measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleic acid reactive antibodies have been reported to inhibit various nucleio acid mediated functions in cell free systems. These antibodies were also shown to inhibit the growth of transformed cells in culture due to the high rate of endocytosis in transformed cells as compared to normal cells. In this report, we have tested the possibility of nucleic acid reactive antibodies inhibiting the growth of tumor cells in vivo. The life span of mice bearing Dalton's lymphoma ascites tumor cells was increased, when they were immunized with conjugates of guanosine-BSA, GMP-BSA and tRNA-MBSA complex before transplanting the tumor cells. A similar effect was also observed when mice were injected intraperitoneally with antibodies to guanosine oi GMP along with the tumor cells. The specificity was ascertained, as immunization with non-specific antigens did not show any significant effect on tumor bearing mice. The results shows that nucleic acid. reactive antibodies inhibit the growth of tumor cells in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Safety, efficacy and enhanced transgene expression are the primary concerns while using any vector for gene therapy. One of the widely used vectors in clinical. trials is adenovirus which provides a safe way to deliver the therapeutic gene. However, adenovirus has poor transduction efficiency in vivo since most tumor cells express low coxsackie and adenovirus receptors. Similarly transgene expression remains low, possibly because of the chromatization of adenoviral genome upon infection in eukaryotic cells, an effect mediated by histone deacetylases (HDACs). Using a recombinant adenovirus (Ad-HSVtk) carrying the herpes simplex thymidine kinase (HSVtk) and GFP genes we demonstrate that HDAC inhibitor valproic acid can bring about an increase in CAR expression on host cells and thereby enhanced Ad-HSVtk infectivity. It also resulted in an increase in transgene (HSVtk and GFP) expression. This, in turn, resulted in increased cell kill of HNSCC cells, following ganciclovir treatment in vitro as well as in vivo in a xenograft nude mouse model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kinetic study of the tumor-associated galactopyranosyl-(1→3)-2-acetamido-2-deoxy-α-d-galactopyranoside (T-antigen) with lectin peanut agglutinin is described. The disaccharide antigen was synthesized by chemical methods and was functionalized suitably for immobilization onto a carboxy-methylated sensor chip. The ligand immobilized surface was allowed interaction with the lectin peanut agglutinin, which acted as the analyte and the interaction was studied by the surface plasmon resonance method. The ligand—lectin interaction was characterized by the kinetic on-off rates and a bivalent analyte binding model was found to describe the observed kinetic constants. It was identified that the antigen-lectin interaction had a faster association rate constant (k a1) and a slower dissociation rate constant (k d1) in the initial binding step. The subsequent binding step showed much reduced kinetic rates. The antigen-lectin interaction was compared with the kinetic rates of the interaction of a galactopyranosyl-(1→4)-β-d-galactopyranoside derivative and a mannopyranoside derivative with the lectin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly purified sheep lung cyclic-3',5'-nucleotide phosphodiesterase was sensitive to Ca2+/EGTA but insensitive to exogenous calmodulin. The Ca2+-sensitivity was inhibited by trifluoperazine. Heat-treated enzyme could activate a calmodulin-deficient phosphodiesterase, suggesting the presence of endogenous calmodulin in sheep lung cyclic-3',5'-nucleotide phosphodiesterase, possibly associated with the enzyme in a Ca2+-independent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca2+-sensitivity of sheep lung cyclic-3',5'-nucleotide phosphodiesterase is provided by endogenous tightly bound calmodulin. The calcium sensitivity of a highly purified enzyme was desensitized by increasing the assay temperature. It could also be desensitized to Ca2+-activation by thiols such as dithiothreitol. The thiol-induced desensitization could be partially reversed by dialysis and almost completely reversed by dilution. The results presented in this paper indicate that thiols are possibly involved in the interaction of calmodulin with cyclic-3',5'-nucleotide phosphodiesterase. This is the first report on temperature and thiol-induced desensitization of Ca2+-sensitivity of a cyclic-3',5'-nucleotide phosphodiesterase.