114 resultados para liver injury

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatotoxicity due to overdose of the analgesic and antipyretic acetaminophen (A-PAIP) is a major cause of liver failure in adults. To better understand the contributions of different signaling pathways, the expression and role of Ras activation was evaluated after oral dosing of mice with APAP (400-500 mg/kg). Ras-guanosine triphosphate (GTP) is induced early and in an oxidative stress-dependent manner. The functional role of Ras activation was studied by a single intraperitoneal injection of the neutral sphingomyelinase and farnesyltransferase inhibitor (FTI) manumycin A (I mg/kg), which lowers induction of Ras-GTP and serum amounts of alanine aminotransferase (ALT). APAP dosing decreases hepatic glutathione amounts, which are not affected by manumycin A treatment. However, APAP-induced activation of c-Jun N-terminal kinase, which plays an important role, is reduced by manumycin A. Also, APAP-induced mitochondrial reactive oxygen species are reduced by manumycin A at a later time point during liver injury. Importantly, the induction of genes involved in the inflammatory response (including iNos, gp91phox, and Fasl) and serum amounts of proinflammatory cytokines interferon-gamma (IFN gamma) and tumor necrosis factor alpha, which increase greatly with APAP challenge, are suppressed with manumycin A. The FTI ctivity of manumycin A is most likely involved in reducing APAP-induced liver injury, because a specific neutral sphingomyelinase inhibitor, GW4869 (I mg/kg), did not show any hepatoprotective effect. Notably, a structurally distinct FTI, gliotoxin (I mg/kg), also inhibits Ras activation and reduces serum amounts of ALT and IFN-gamma after APAP dosing. Finally, histological analysis confirmed the hepatoprotective effect f manumycin A and gliotoxin during APAP-induced liver damage. Conclusion: This study identifies a key role for Ras activation and demonstrates the therapeutic efficacy of FTIs during APAP-induced liver injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Viral hepatitis is caused mainly by infection with one of the five hepatitis viruses, which use the liver as their primary site of replication. Each of these, known as hepatitis A through E viruses (HAV to HEV), belong to different virus families, have unique morphology, genomic organization and replication strategy. These viruses cause similar clinical manifestations during the acute phase of infection but vary in their ability to cause chronic infection. While HAV and HEV cause only acute disease with no chronic sequelae, HBV, HCV and HDV cause varying degrees of chronicity and liver injury, which can progress to cirrhosis and liver cancers. Though specific serological tests are available for the known hepatitis viruses, nearly 20% of all hepatitis cases show no markers. Antiviral therapy is also recommended for some hepatitis viruses and a preventive vaccine is available only for hepatitis B. More research and public awareness programmes are needed to control the disease. This review will provide an overview of the hepatitis viruses and the disease they cause.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the recent past, there have been enormous efforts to understand effect of drugs on human body. Prior to understand the effect of drugs on human body most of the experiments are carried out on cells or model organisms. Here we present our study on the effect of chemotherapeutic drugs on cancer cells and the acetaminophen (APAP) induced hepatotoxicity in mouse model. Histone deacetylase inhibitors (HDIs) have attracted attention as potential drug molecules for the treatment of cancer. These are the chemotherapeutic drugs which have indirect mechanistic action against cancer cells via acting against histone deacetylases (HDAC). It has been known that different HDAC enzymes are over-expressed in various types of cancers for example; HDAC1 is over expressed in prostate, gastric and breast carcinomas. Therefore, in order to optimise chemotherapy, it is important to determine the efficacy of various classes of HDAC inhibitor drugs against variety of over-expressed HDAC enzymes. In the present study, FTIR microspectroscopy has been employed to predict the acetylation and propionylation brought in by HDIs. The liver plays an important role in cellular metabolism and is highly susceptible to drug toxicity. APAP which is an analgesic and antipyretic drug is extensively used for therapeutic purposes and has become the most common cause of acute liver failure (ALF). In the current study, we have focused to understand APAP induced hepatotoxicity using FTIR microspectroscopy. In the IR spectrum the bands corresponding to glycogen, ester group and were found to be suitable markers to predict liver injury at early time point (0.5hr) due to APAP both in tissue and serum in comparison to standard biochemical assays. Our studies show the potential of FTIR spectroscopy as a rapid, sensitive and non invasive detection technique for future clinical diagnosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acetaminophen is a widely prescribed drug used to relieve pain and fever; however, it is a leading cause of drug-induced liver injury and a burden on public healthcare. In this study, hepatotoxicity in mice post oral dosing of acetaminophen was investigated using liver and sera samples with Fourier Transform Infrared microspectroscopy. The infrared spectra of acetaminophen treated livers in BALB/ mice show decrease in glycogen, increase in amounts of cholesteryl esters and DNA respectively. Rescue experiments using L-methionine demonstrate that depletion in glycogen and increase in DNA are abrogated with pre-treatment, but not post-treatment, with L-methionine. This indicates that changes in glycogen and DNA are more sensitive to the rapid depletion of glutathione. Importantly, analysis of sera identified lowering of glycogen and increase in DNA and chlolesteryl esters earlier than increase in alanine aminotransferase, which is routinely used to diagnose liver damage. In addition, these changes are also observed in C57BL/6 and Nos2(-/-) mice. There is no difference in the kinetics of expression of these three molecules in both strains of mice, the extent of damage is similar and corroborated with ALT and histological analysis. Quantification of cytokines in sera showed increase upon APAP treatment. Although the levels of Tnf alpha and Ifn gamma in sera are not significantly affected, Nos2(-/-) mice display lower Il6 but higher Il10 levels during this acute model of hepatotoxicity. Overall, this study reinforces the growing potential of Fourier Transform Infrared microspectroscopy as a fast, highly sensitive and label-free technique for non-invasive diagnosis of liver damage. The combination of Fourier Transform Infrared microspectroscopy and cytokine analysis is a powerful tool to identify multiple biomarkers, understand differential host responses and evaluate therapeutic regimens during liver damage and, possibly, other diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Role Of The Amino And Carboxyl-Terminal Regions Of Cytosolic Serine Hydroxymethyltransferase (SHMT) In Subunit Assembly And Catalysis Was Studied Using Sis Amino-Terminal (Lacking The First 6, 14, 30, 49, 58, And 75 Residues) And Two Carboxyl-Terminal (Lacking The Last 49 And 185 Residues) Deletion Mutants. These Mutants Were Constructed From A Full Length Cdna Clone Using Restriction Enzyme/PCR-Based Methods And Overexpressed In Escherichia Coli. The Overexpressed Proteins, Des-(A1-K6) SHMT And Des-(A1-W14)-SHMT Were Present In The Soluble Fraction And They Were Purified To Homogeneity. The Deletion Clones, For Des-(A1-V30)-SHMT And Des-(A1-L49)-SHMT Were Expressed At Very Low Levels, Whereas Des-(A1-R58)-SHMT, Des-/A1-G75)-SHMT, Des-(Q435-F483)-SHMT And Des-(L299-F483)-SHMT Mutant Proteins Were Not Soluble And Formed Inclusion Bodies. Des-(A1-K6)-SHMT And Des-(A1-W14)-SHMT Catalyzed Both The Tetrahydrofolate-Dependent And Tetrahydrofolate-Independent Reactions, Generating Characteristic Spectral Intermediates With Glycine And Tetrahydrofolate. The Two Mutants Had Similar Kinetic Parameters To That Of The Recombinant SHMT (Rshmt). However, At 55 Degrees C, The Des-(A1-W14)-SHMT Lost Almost All The Activity Within 5 Min, While At The Same Temperature Rshmt And Des-(A1-K6)-SHMT Retained 85% And 70% Activity, Respectively. Thermal Denaturation Studies Showed That Des-(A1-W14)-SHMT Had A Lower Apparent Melting Temperature (52 Degrees C) Compared To Rshmt (56 Degrees C) And Des-(A1-K6)-SHMT (55 Degrees C), Suggesting That N-Terminal Deletion Had Resulted In A Decrease In The Thermal Stability Of The Enzyme. Further Urea Induced Inactivation Of The Enzymes Revealed That 50% Inactivation Occurred At A Lower Urea Concentration (1.2+/-0.1 M) In The Case Of Des-(A1-W14)-SHMT Compared To Rshmt (1.8+/-0.1 M) And Des-(A1 -K6)-SHMT (1.7+/-0.1 M). The Apoenzyme Of Des-/A1-K6)-SHMT Was Present Predominantly In The Dimer Form, Whereas The Apoenzymes Of Rshmt And Des-(A1-K6)-SHMT Were A Mixture Of Tetramers (Approximate To 75% And Approximate To 65%, Respectively) And Dimers. While, Rshmt And Des-(A1-K6)-SHMT Apoenzymes Could Be Reconstituted Upon The Addition Of Pyridoxal-5'-Phosphate To 96% And 94% Enzyme Activity, Respectively Des-(A1-W14)-SHMT Apoenzyme Could Be Reconstituted Only Upto 22%. The Percentage Activity Refined Correlated With The Appearance Of Visible CD At 425 Nm And With The Amount Of Enzyme Present In The Tetrameric Form Upon Reconstitution As Monitored By Gel Filtration. These Results Demonstrate That, In Addition To The Cofactor, The N-Terminal Arm Plays An Important Role In Stabilizing The Tetrameric Structure Of SHMT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of studies in yeast have shown that DNA topoisomerase TI is essential for chromosome condensation and disjunction during mitosis at the metaphase/anaphase transition and meiosis I. Accordingly, kinetic and mechanistic studies have implied a role for topoisomerase rr in chromosome disjunction. As a step toward understanding the nature and role of topoisomerase II in a mammalian germline in vivo, we have purified topoisomerase II from rat testis to homogeneity and ascertained several of its catalytic activities in conjunction with that of the purified enzyme from liver. The purified enzymes appeared to be monomers under denaturing conditions; however, they differed in their relative molecular mass. Topoisomerase II from testis and liver have apparent molecular masses of 150 +/- 10 kDa and 160 +/- 10 kDa, respectively. The native molecular mass of testis topoisomerase II as assayed by immunoblot analysis of cell-foe extracts, prepared in the presence of SDS and a number of protease inhibitors, corroborated with the size of the purified enzyme. Both enzymes are able to promote decatenation and relax supercoiled DNA substrates in an ATP and Mg2+-dependent manner. However, quantitative comparison of catalytic properties of topoisomerase II from testis with that of the enzyme from liver displayed significant differences in their efficiencies. Optimal pH values for testis enzyme are 6.5 to 8.5 while they are 6 to 7.5 for the liver enzyme. Intriguingly, the relaxation activity of liver topoisomerase II was inhibited by potassium glutamate at 1 M, whereas testis enzyme required about half its concentration. These findings argue that topoisomerase II from rat testis is structurally distinct from that of its somatic form and the functional differences between the two enzymes parallels with the physiological environment that is unique to these two tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific activity and content of cytochrome oxidase in the rough endoplasmic reticulum--mitochondrion complex are higher than in the mitochondrial fraction. Radiolabelling studies with the use of hepatocytes and isolated microsomal and rough endoplasmic reticulum--mitochondrion fractions, followed by immunoprecipitation with anti-(cytochrome oxidase) antibody, reveal that the nuclear-coded cytoplasmic subunits of cytochrome oxidase are preferentially synthesized in the latter fraction. The results have a bearing on the mechanism of transport of these subunits into mitochondria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady-state kinetic constants for the catalysis of CO2 hydration by the sulfonamide-resistant and testosterone-induced carbonic anhydrase from the liver of the male rat has been determined by stopped-flow spectrophotometry. The turnover number was 2.6 ± 0.6 × 103 s− at 25 °C, and was invariant with pH ranging from 6.2 to 8.2 within experimental error. The Km at 25 °C was 5 ± 1 mImage , and was also pH independent. These data are in quantitative agreement with earlier findings of pH-independent CO2 hydration activity for the mammalian skeletal muscle carbonic anhydrase isozyme III. The turnover numbers for higher-activity isozymes I and II are strongly pH dependent in this pH range. Thus, the kinetic status of the male rat liver enzyme is that of carbonic anhydrase III. This finding is consistent with preliminary structural and immunologic data from other laboratories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Administration of the antihypercholesterolaemic drug clofibrate stimulates the rates of synthesis of nucleic acids and proteins in rat liver. The biosynthesis of mitochondrial proteins also is enhanced by the drug. In drug-fed animals, the rates of incorporation in vivo of radioactive precursors into DNA, RNA and proteins are stimulated even when the liver undergoes regeneration following partial hepatectomy. The rate of synthesis of mitochondrial proteins in the regenerative phase is higher in clofibrate-fed animals. These effects are consistent with the hepatomegalic and mitochondria-proliferating property of the drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monoterpene cyclic ether, cineole (l,8-cineole, I) also known as eucalyptol, is a component of many essential oils and is widely distributed in nature. It is extensively used in pharmaceutical preparations for external application and also as a nasal spray. It was reported earlier that cineole when administered to sheep may be largely oxidized in the system (Scheline 1978). However the mode of metabolism of cineole is not known. Hence the present study was undertaken to investigate the metabolic fate of this ubiquitous terpenoid following its administration to rats by gastric intubation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of rats with Adriamycin caused an increase in the incorporation into hepatic cholesterol of [1-14C] acetate, but not of [2-14C] mevalonate. The step affected was found to be 3-hydroxy-3-methylglutaryl CoA reductase whose activity in the liver microsomes increased in Adriamycin-treated animals, but was inhibited when the drug was added in the assay medium. Also, the concentration of ubiquinone in the liver and of cholesterol in the plasma increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thioacetamide, a hepatocarcinogen and an inhibitor of heme synthesis, blocks the phenobarbitone- mediated increase in the transcription of cytochrome P-450b+e messenger RNA in rat liver. This property is also shared by CoCl, and 3-amino-l,2,4-triazole, two other inhibitors of heme synthesis. Thus, it appears feasible that heme may serve as a positive regulator of cytochrome P-450b+e gene transcription. Thioacetamide enhances albumin messenger RNA concentration, whereas phenobarbitone decreases the same. However, these changes in albumin messenger RNA concentration are not accompanied by corresponding changes in the transcription rates. Therefore, drug-mediated changes in albumin messenger RNA concentration are due to posttranscriptional regulation. The property of thioacetamide to enhance the albumin messenger RNA concentration is not shared by CoC1, and 3-amino- 1,2,4-triazole. Therefore, heme does not appear to be a regulatory molecule mediating the reciprocal changes brought about in the concentrations of cytochrome P-450b+e and albumin messenger RNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

24-norursodeoxycholic acid (norUDCA), a side chain-modified ursodeoxycholic acid derivative, has dramatic therapeutic effects in experimental cholestasis and may be a promising agent for the treatment of cholestatic liver diseases. We aimed to better understand the physiologic and therapeutic properties of norUDCA and to test if they are related to its side chain length and/or relative resistance to amidation. For this purpose, Mdr2-/- mice, a model for sclerosing cholangitis, received either a standard diet or a norUDCA-, tauro norursodeoxycholic acid (tauro- norUDCA)-, or di norursodeoxycholic acid (di norUDCA)-enriched diet. Bile composition, serum biochemistry, liver histology, fibrosis, and expression of key detoxification and transport systems were investigated. Direct choleretic effects were addressed in isolated bile duct units. The role of Cftr for norUDCA-induced choleresis was explored in Cftr-/- mice. norUDCA had pharmacologic features that were not shared by its derivatives, including the increase in hepatic and serum bile acid levels and a strong stimulation of biliary HCO3- -output. norUDCA directly stimulated fluid secretion in isolated bile duct units in a HCO3- -dependent fashion to a higher extent than the other bile acids. Notably, the norUDCA significantly stimulated HCO 3- -output also in Cftr-/- mice. In Mdr2-/- mice, cholangitis and fibrosis strongly improved with norUDCA, remained unchanged with tauro- norUDCA, and worsened with di norUDCA. Expression of Mrp4, Cyp2b10, and Sult2a1 was increased by norUDCA and di norUDCA, but was unaffected by tauro- norUDCA. Conclusion:The relative resistance of norUDCA to amidation may explain its unique physiologic and pharmacologic properties. These include the ability to undergo cholehepatic shunting and to directly stimulate cholangiocyte secretion, both resulting in a HCO3- -rich hypercholeresis that protects the liver from cholestatic injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosynthesis of the cytoplasmic subunits of cytochrome oxidase from rat liver has been studied in vitro by translating liver poly (A)-containing RNA in the wheat germ cell-free system and immunoprecipitating the products with anti-cytochrome oxidase antibody. Analysis of the labelled immunoprecipitate on SDS-gels does not reveal the presence of a polyprotein precursor. On the other hand discrete products which are either slightly bigger or closely similar to the mature subunits present in purified cytochrome oxidase have been detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cibacron Blue F3G-A, a probe used to monitor nucleotide binding domains in enzymes, inhibited sheep liver 5, 10-methylenetetrahydrofolate reductase competitively with respect to 5-methyltetrahydrofolate and NADPH. The Ki values obtained by kinetic methods and the Kd value for the binding of the dye to the enzyme estimated by protein fluorescence quenching were in the range 0·9-1·2 μM. Another triazine dye, Procion Red HE-3B interacted with the enzyme in an essentially similar manner to that observed with Cibacron Blue F3G-A. These results as well as the interaction of the dye with the enzyme monitored by difference spectroscopy and intrinsic protein fluorescence quenching methods indicated that the dye was probably interacting at the active site of the enzyme by binding at a hydrophobic region.