73 resultados para internet monitoring

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach for assessing power system voltage stability based on artificial feed forward neural network (FFNN). The approach uses real and reactive power, as well as voltage vectors for generators and load buses to train the neural net (NN). The input properties of the NN are generated from offline training data with various simulated loading conditions using a conventional voltage stability algorithm based on the L-index. The performance of the trained NN is investigated on two systems under various voltage stability assessment conditions. Main advantage is that the proposed approach is fast, robust, accurate and can be used online for predicting the L-indices of all the power system buses simultaneously. The method can also be effectively used to determining local and global stability margin for further improvement measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time reversal active sensing using Lamb waves is investigated for health monitoring of a metallic structure. Experiments were conducted on an aluminum plate to study the time reversal behavior of A(0) and S-0 Lamb wave modes under narrow band and broad band pulse excitation. Damage in the form of a notch was introduced in the plate to study the changes in the characteristics of the time reversed Lamb wave modes experimentally. Time-frequency analysis of the time reversed signal was carried out to extract the damage information. A measure of damage based on wavelet transform was derived to quantify the hidden damage information in the time reversed signal. It has been shown that time reversal can be used to achieve temporal recompression of Lamb waves under broadband signal excitation. Further, the broad band excitation can also improve the resolution of the technique in detecting closely located defects. This is demonstrated by picking up the reflection of waves from the edge of the plate, from a defect close to the edge of the plate and from defects located near to each other. This study shows the effectiveness of Lamb wave time reversal for temporal recompression of dispersive Lamb waves for damage detection in health monitoring applications. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in structural integrity evaluation have led to the development. of PZT wafer sensors (PWAS) which can be embedded or surface mounted for both acoustic emission (AE) and ultrasonic (UT) modes, which forms an integrated approach for Structural Health Monitoring (SHM) of aerospace structures. For the fabrication of PWAS wafers, soft PZT formulation (SP-5H Grade containing dopants like BA, SM, CA, ZN, Y and HF) were used. The piezoelectric charge constant (d(33)) was measured by a d(33) meter. As a first step towards the final objective of developing Health monitoring methods with embedded PWAS, experiments were conducted on aluminum and composite plates of finite dimensions using PWAS sensors. The AE source was simulated by breaking 0.5mm pencil lead on the surface of a thin plate. Experiments were also conducted with surface mounted PZT films and conventional AE sensors in order to establish the sensitivity of PWAS. A comparison of results of theoretical and experimental work shows good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we are concerned with energy efficient area monitoring using information coverage in wireless sensor networks, where collaboration among multiple sensors can enable accurate sensing of a point in a given area-to-monitor even if that point falls outside the physical coverage of all the sensors. We refer to any set of sensors that can collectively sense all points in the entire area-to-monitor as a full area information cover. We first propose a low-complexity heuristic algorithm to obtain full area information covers. Using these covers, we then obtain the optimum schedule for activating the sensing activity of various sensors that maximizes the sensing lifetime. The scheduling of sensor activity using the optimum schedules obtained using the proposed algorithm is shown to achieve significantly longer sensing lifetimes compared to those achieved using physical coverage. Relaxing the full area coverage requirement to a partial area coverage (e.g., 95% of area coverage as adequate instead of 100% area coverage) further enhances the lifetime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide analytical models for capacity evaluation of an infrastructure IEEE 802.11 based network carrying TCP controlled file downloads or full-duplex packet telephone calls. In each case the analytical models utilize the attempt probabilities from a well known fixed-point based saturation analysis. For TCP controlled file downloads, following Bruno et al. (In Networking '04, LNCS 2042, pp. 626-637), we model the number of wireless stations (STAs) with ACKs as a Markov renewal process embedded at packet success instants. In our work, analysis of the evolution between the embedded instants is done by using saturation analysis to provide state dependent attempt probabilities. We show that in spite of its simplicity, our model works well, by comparing various simulated quantities, such as collision probability, with values predicted from our model. Next we consider N constant bit rate VoIP calls terminating at N STAs. We model the number of STAs that have an up-link voice packet as a Markov renewal process embedded at so called channel slot boundaries. Analysis of the evolution over a channel slot is done using saturation analysis as before. We find that again the AP is the bottleneck, and the system can support (in the sense of a bound on the probability of delay exceeding a given value) a number of calls less than that at which the arrival rate into the AP exceeds the average service rate applied to the AP. Finally, we extend the analytical model for VoIP calls to determine the call capacity of an 802.11b WLAN in a situation where VoIP calls originate from two different types of coders. We consider N-1 calls originating from Type 1 codecs and N-2 calls originating from Type 2 codecs. For G711 and G729 voice coders, we show that the analytical model again provides accurate results in comparison with simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power system disturbances are often caused by faults on transmission lines. When faults occur in a power system, the protective relays detect the fault and initiate tripping of appropriate circuit breakers, which isolate the affected part from the rest of the power system. Generally Extra High Voltage (EHV) transmission substations in power systems are connected with multiple transmission lines to neighboring substations. In some cases mal-operation of relays can happen under varying operating conditions, because of inappropriate coordination of relay settings. Due to these actions the power system margins for contingencies are decreasing. Hence, power system protective relaying reliability becomes increasingly important. In this paper an approach is presented using Support Vector Machine (SVM) as an intelligent tool for identifying the faulted line that is emanating from a substation and finding the distance from the substation. Results on 24-bus equivalent EHV system, part of Indian southern grid, are presented for illustration purpose. This approach is particularly important to avoid mal-operation of relays following a disturbance in the neighboring line connected to the same substation and assuring secure operation of the power systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we show the applicability of Ant Colony Optimisation (ACO) techniques for pattern classification problem that arises in tool wear monitoring. In an earlier study, artificial neural networks and genetic programming have been successfully applied to tool wear monitoring problem. ACO is a recent addition to evolutionary computation technique that has gained attention for its ability to extract the underlying data relationships and express them in form of simple rules. Rules are extracted for data classification using training set of data points. These rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in ACO based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The classification accuracy obtained in ACO based approach is as good as obtained in other biologically inspired techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fallibility is inherent in human cognition and so a system that will monitor performance is indispensable. While behavioral evidence for such a system derives from the finding that subjects slow down after trials that are likely to produce errors, the neural and behavioral characterization that enables such control is incomplete. Here, we report a specific role for dopamine/basal ganglia in response conflict by accessing deficits in performance monitoring in patients with Parkinson's disease. To characterize such a deficit, we used a modification of the oculomotor countermanding task to show that slowing down of responses that generate robust response conflict, and not post-error per se, is deficient in Parkinson's disease patients. Poor performance adjustment could be either due to impaired ability to slow RT subsequent to conflicts or due to impaired response conflict recognition. If the latter hypothesis was true, then PD subjects should show evidence of impaired error detection/correction, which was found to be the case. These results make a strong case for impaired performance monitoring in Parkinson's patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Back face strain (BFS) measurement is now well-established as an indirect technique to monitor crack length in compact tension (CT) fracture specimens [1,2]. Previous work [2] developed empirical relations between fatigue crack propagation (FCP) parameters. BFS, and number of cycles for CT specimens subjected to constant amplitude fatigue loading. These predictions are experimentally validated in terms of the variations of mean values of BFS and load as a function of crack length. Another issue raised by this study concerns the validity of assigning fixed values for the Paris parameters C and n to describe FCP in realistic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.