19 resultados para forage pea
em Indian Institute of Science - Bangalore - Índia
Resumo:
The conformational stability of the homodimeric pea lectin was determined by both isothermal urea-induced and thermal denaturation in the absence and presence of urea. The denaturation profiles were analyzed to obtain the thermodynamic parameters associated with the unfolding of the protein. The data not only conform to the simple A(2) double left right arrow 2U model of unfolding but also are well described by the linear extrapolation model for the nature of denaturant-protein interactions. In addition, both the conformational stability (Delta G(s)) and the Delta C-p for the protein unfolding is quite high, at about 18.79 kcal/ mol and 5.32 kcal/(mol K), respectively, which may be a reflection of the relatively larger size of the dimeric molecule (M-r 49 000) and, perhaps, a consequent larger buried hydrophobic core in the folded protein. The simple two-state (A(2) double left right arrow 2U) nature of the unfolding process, with the absence of any monomeric intermediate, suggests that the quaternary interactions alone may contribute significantly to the conformational stability of the oligomer-a point that may be general to many oligomeric proteins.
Resumo:
An enzyme catalysing the synthesis of sym-homospermidine from putrescine and NAD+ with concomitant liberation of NH3 was purified 100-fold from Lathyrus sativus (grass pea) seedlings by affinity chromatography on Blue Sepharose. This thiol enzyme had an apparent mol.wt. of 75000 and exhibited Michelis-Menten kinetics with Km 3.0mM for putrescine. The same enzyme activity could also be demonstrated in the crude extracts of sandal (Santalum album) leaves, but with a specific activity 15-fold greater than that in L. sativus seedlings.
Resumo:
Titration calorimetry measurements of the binding of phenyl-alpha (alpha PhOGlu), 3-methoxy (3MeOGlu), fluorodeoxy and deoxy derivatives of alpha-D-glucopyranose (Glu) to concanavalin A (conA), pea lectin and lentil lectin were performed at approx. 10 and 25 degrees C in 0.01 M dimethylglutaric acid/NaOH buffer, pH 6.9, containing 0.15 M NaCl and Mn2+ and Ca2+ ions. Apparently the 3-deoxy, 4-deoxy and 6-deoxy as well as the 4-fluorodeoxy and 6-fluorodeoxy derivatives of Glu do not bind to the lectins because no heat release was observed on the addition of aliquots of solutions of these derivatives to the lectin solutions. The binding enthalpies, delta H0b, and entropies, delta S0b, determined from the measurements were compared with the same thermodynamic binding parameters for Glu, D-mannopyranoside and methyl-alpha- D-glucopyranoside (alpha MeOGlu). The binding reactions are enthalpically driven with little change in the heat capacity on binding, and exhibit enthalpy-entropy compensation. Differences between the thermodynamic binding parameters can be rationalized in terms of the interactions apparent in the known crystal structures of the methyl-alpha-D-mannopyranoside-conA [Derewenda, Yariv, Helliwell, Kalb (Gilboa), Dodson, Papiz, Wan and Campbell (1989) EMBO J. 8, 2189-2193] and pea lectin-trimanno-pyranoside [Rini, Hardman, Einspahr, Suddath and Carber (1993) J. Biol. Chem. 268, 10126-10132] complexes. Increases in the entropy change on binding are observed for alpha MeOGlu binding to pea and lentil lectin, for alpha PhOGlu binding to conA and pea lectin, and for 3MeOGlu binding to pea lectin relative to the entropy change for Glu binding, and imply that the phenoxy and methoxy substituents provide additional hydrophobic interactions in the complex. Increases in the binding enthalpy relative to that of Glu are observed for deoxy and fluoro derivatives in the C-1 and C-2 positions and imply that these substituents weaken the interaction with the surrounding water, thereby strengthening the interaction with the binding site.
Resumo:
Titration calorimetry measurements of the binding of methyl alpha-D-mannopyranoside (Me alpha Man), D-mannopyranoside (Man), methyl alpha-D-glucopyranoside (Me alpha Glu), and D-glucopyranoside (Glu) to concanavalin A (Con A), pea lectin, and lentil lectin were performed at 281 and 292 K in 0.01 M dimethylglutaric acid-NaOH buffer (pH 6.9) containing 0.15 M NaCl and Mn+2 and Ca+2 ions. The site binding enthalpies, delta H, are the same at both temperatures and range from -28.4 +/- 0.9 (Me alpha Man) to -16.6 +/- 0.5 kJ mol-1 (Glu) for Con A, from -26.2 +/- 1.1 (Me alpha Man) to -12.8 +/- 0.4 kJ mol-1 (Me alpha Glu) for pea lectin, and from -16.6 +/- 0.7 (Me alpha Man) to -8.0 +/- 0.2 kJ mol-1 (Me alpha Glu) for lentil lectin. The site binding constants range from 17 +/- 1 x 10(3) M-1 (Me alpha Man to Con A at 281.2 K) to 230 +/- 20 M-1 (Glu to lentil lectin at 292.6 K) and exhibit high specificity for Con A where they are in the Me alpha Man:Man:Me alpha Glu:Glu ratio of 21:4:5:1, while the corresponding ratio is 5:2:1.5:1 for pea lectin and 4:2:2:1 for lentil lectin. The higher specificity for Con A indicates more interactions between the amino acid residues at the binding site and the carbohydrate ligand than for the pea and lentil lectin-carbohydrate complexes. The carbohydrate-lectin binding results exhibit enthalpy-entropy compensation in that delta Hb (kJ mol-1) = -1.67 +/- 0.06 x 10(4) + (1.30 +/- 0.12)T(K) delta Sb (J mol-1K-1). Differential scanning calorimetry measurements on the thermal denaturation of the lectins and their carbohydrate complexes show that the Con A tetramer dissociates into monomers, while the pea and lentil lectin dimers dissociate into two submonomer fragments. At the denaturation temperature, one carbohydrate binds to each monomer of Con A and the pea and lentil lectins. Complexation with the carbohydrate increases the denaturation temperature of the lectin and the magnitude of the increases yield binding constants in agreement with the determinations from titration calorimetry.
Resumo:
The CCEM method (Contact Criteria and Energy Minimisation) has been developed and applied to study protein-carbohydrate interactions. The method uses available X-ray data even on the native protein at low resolution (above 2.4 Å) to generate realistic models of a variety of proteins with various ligands.The two examples discussed in this paper are arabinose-binding protein (ABP) and pea lectin. The X-ray crystal structure data reported on ABP-β-l-arabinose complex at 2.8, 2.4 and 1.7 Å resolution differ drastically in predicting the nature of the interactions between the protein and ligand. It is shown that, using the data at 2.4 Å resolution, the CCEM method generates complexes which are as good as the higher (1.7 Å) resolution data. The CCEM method predicts some of the important hydrogen bonds between the ligand and the protein which are missing in the interpretation of the X-ray data at 2.4 Å resolution. The theoretically predicted hydrogen bonds are in good agreement with those reported at 1.7 Å resolution. Pea lectin has been solved only in the native form at 3 Å resolution. Application of the CCEM method also enables us to generate complexes of pea lectin with methyl-α-d-glucopyranoside and methyl-2,3-dimethyl-α-d-glucopyranoside which explain well the available experimental data in solution.
Resumo:
Background: Animals that hoard food to mediate seasonal deficits in resource availability might be particularly vulnerable to climate-mediated reductions in the quality and accessibility of food during the caching season. Central-place foragers might be additionally impacted by climatic constraints on their already restricted foraging range. Aims: We sought evidence for these patterns in a study of the American pika (Ochotona princeps), a territorial, central-place forager sensitive to climate. Methods: Pika food caches and available forage were re-sampled using historical methods at two long-term study sites, to quantify changes over two decades. Taxa that changed in availability or use were analysed for primary and secondary metabolites. Results: Both sites trended towards warmer summers, and snowmelt trended earlier at the lower latitude site. Graminoid cover increased at each site, and caching trends appeared to reflect available forage rather than primary metabolites. Pikas at the lower latitude site preferred species higher in secondary metabolites, known to provide higher-nutrient winter forage. However, caching of lower-nutrient graminoids increased in proportion with graminoid availability at that site. Conclusions: If our results represent trends in climate, cache quality and available forage, we predict that pikas at the lower latitude site will soon face nutritional deficiencies.
Resumo:
Most bees are diurnal, with behaviour that is largely visually mediated, but several groups have made evolutionary shifts to nocturnality, despite having apposition compound eyes unsuited to vision in dim light. We compared the anatomy and optics of the apposition eyes and the ocelli of the nocturnal carpenter bee, Xylocopa tranquebarica, with two sympatric species, the strictly diurnal X. leucothorax and the occasionally crepuscular X. tenuiscapa. The ocelli of the nocturnal X. tranquebarica are unusually large (diameter ca. 1 mm) and poorly focussed. Moreover, their apposition eyes show specific visual adaptations for vision in dim light, including large size, large facets and very wide rhabdoms, which together make these eyes 9 times more sensitive than those of X. tenuiscapa and 27 times more sensitive than those of X. leucothorax. These differences in optical sensitivity are surprisingly small considering that X. tranquebarica can fly on moonless nights when background luminance is as low as 10(-5) cd m(-2), implying that this bee must employ additional visual strategies to forage and find its way back to the nest. These strategies may include photoreceptors with longer integration times and higher contrast gains as well as higher neural summation mechanisms for increasing visual reliability in dim light.
Resumo:
Antipyrine is a well known ligand for lanthanides (I). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrine is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions. Keeping these points in view we have reported earlier, complexes of lanthanides with a bidentate ligand N,N-diethyl-antipyrine-4-carboxamide (2). In this communication we report the synthesis of two new ligands from Schiff base condensation of antipyraldehyde and the hydrazides of acetic and benzoic acids and the complexes formed by these hydrazones with lanthanide perchlorates.
Resumo:
Bees of the genus Apis are important foragers of nectar and pollen resources. Although the European honeybee, Apis mellifera, has been well studied with respect to its sensory abilities, learning behaviour and role as pollinators, much less is known about the other Apis species. We studied the anatomical spatial resolution and absolute sensitivity of the eyes of three sympatric species of Asian honeybees, Apis cerana, Apis florea and Apis dorsata and compared them with the eyes of A. mellifera. Of these four species, the giant honeybee A. dorsata (which forages during moonlit nights) has the lowest spatial resolution and the most sensitive eyes, followed by A. mellifera, A. cerana and the dwarf honeybee, A. florea (which has the smallest acceptance angles and the least sensitive eyes). Moreover, unlike the strictly diurnal A. cerana and A. florea, A. dorsata possess large ocelli, a feature that it shares with all dim-light bees. However, the eyes of the facultatively nocturnal A. dorsata are much less sensitive than those of known obligately nocturnal bees such as Megalopta genalis in Panama and Xylocopa tranquebarica in India. The differences in sensitivity between the eyes of A. dorsata and other strictly diurnal Apis species cannot alone explain why the former is able to fly, orient and forage at half-moon light levels. We assume that additional neuronal adaptations, as has been proposed for A. mellifera, M. genalis and X. tranquebarica, might exist in A. dorsata.
Resumo:
Antipyrlne is a well known llgand for lanthanldes (i). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrlne is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions.
Resumo:
2-Phenethyl alcohol (2-PEA) and 2-phenyllactic acid (2-PLA) were isolated from the culture filtrates of Candida species grown in media containing peptone or phenylalanine as nitrogen source. These compounds were characterized by comparing their UV, IR, and NMR spectral properties with authentic samples. Candida species differed markedly in their production of 2-PEA and 2-PLA. Experiments using [14C]-phenylalanine indicated that both 2-PEA and 2-PLA are synthesised from L-phenylalanine. A pathway for the biosynthesis of 2-PEA from L-phenylalanine has been proposed.
Resumo:
Chital or axis deer (Axis axis) form fluid groups that change in size temporally and in relation to habitat. Predictions of hypotheses relating animal density, rainfall, habitat structure, and breeding seasonality, to changes in chital group size were assessed simultaneously using multiple regression models of monthly data collected over a 2 yr period in Guindy National Park, in southern India. Over 2,700 detections of chital groups were made during four seasons in three habitats (forest, scrubland and grassland). In scrubland and grassland, chital group size was positively related to animal density, which increased with rainfall. This suggests that in these habitats, chital density increases in relation to food availability, and group sizes increase due to higher encounter rate and fusion of groups. The density of chital in forest was inversely related to rainfall, but positively to the number of fruiting tree species and availability of fallen litter, their forage in this habitat. There was little change in mean group size in the forest, although chital density more than doubled during the dry season and summer. Dispersion of food items or the closed nature of the forest may preclude formation of larger groups. At low densities, group sizes in all three habitats were similar. Group sizes increased with chital density in scrubland and grassland, but more rapidly in the latter—leading to a positive relationship between openness and mean group size at higher densities. It is not clear, however, that this relationship is solely because of the influence of habitat structure. The rutting index (monthly percentage of adult males in hard antler) was positively related to mean group size in forest and scrubland, probably reflecting the increase in group size due to solitary males joining with females during the rut. The fission-fusion system of group formation in chital is thus interactively influenced by several factors. Aspects that need further study, such as interannual variability, are highlighted.
Resumo:
Mixed-species flocks of foraging birds have been documented from terrestrial habitats all over the world and are thought to form for either improved feeding efficiency or better protection from predators. Two kinds of flock participants are recognized: those that join other species ('followers') and are therefore likely to be the recipients of the benefits of flock participation and those that are joined ('leaders'). Through comparative analyses, using a large sample of flocks from around the world, we show that (1) 'followers' tend to be smaller, more insectivorous, and feed in higher strata than matched species that participate in flocks to a lesser extent and (2) 'leaders' tend to be cooperative breeders more often than matched species that are not known to lead flocks. Furthermore, meta-analyses of published results from across the world showed that bird species in terrestrial mixed-species flocks increase foraging rates and reduce vigilance compared to when they are solitary or in conspecific groups. Moreover, the increase in foraging rates is seen only with flock followers and not flock leaders. These findings suggest a role for predation in the evolution of mixed-species flocking. Species that are vulnerable to predation follow species whose vigilance they can exploit. By doing so, they are able to reduce their own vigilance and forage at higher rates. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.