74 resultados para cellulose solution in ionic liquids

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion transport in a polymer-ionic liquid (IL) soft matter composite electrolyte is discussed here in detail in the context of polymer-ionic liquid interaction and glass transition temperature The dispersion of polymethylmetacrylate (PMMA) in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) resulted in transparent composite electrolytes with a jelly-like consistency The composite ionic conductivity measured over the range -30 C to 60 C was always lower than that of the neat BMITFSI/BMIPF6 and LiTFSI-BMITFSI/LiTFSI-BMIPF6 electrolytes but still very high (>1 mS/cm at 25 degrees C up to 50 wt% PMMA) While addition of LiTFSI to IL does not influence the glass T-g and T-m melting temperature significantly dispersion of PMMA (especially at higher contents) resulted in increase in T-g and disappearance of T-m In general the profile of temperature-dependent ionic conductivity could be fitted to Vogel-Tamman-Fulcher (VTF) suggesting a solvent assisted ion transport However for higher PMMA concentration sharp demarcation of temperature regimes between thermally activated and solvent assisted ion transport were observed with the glass transition temperature acting as the reference point for transformation from one form of transport mechanism to the other Because of the beneficial physico-chemical properties and interesting ion transport mechanism we envisage the present soft matter electrolytes to be promising for application in electrochromic devices (C) 2010 Elsevier Ltd All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microscopic calculation of solvation dynamics of dipolar and quadrupolar solutes in liquid water and acetonitrile is presented. The solvation is found to he biphasic. The calculated solvation time correlation function of ionic quadrupolar solute (K+) in water is in good agreement with re cent computer simulation results. Present study reveals some interesting aspects of quadrupolar solvation dynamics which differ significantly from that of ionic and dipolar solvation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pd/CeO2 (1 at. %) prepared by the solution-combustion method shows a higher catalytic activity for CO oxidation and NO reduction than Pd metal, PdO, and Pd dispersed over CeO2 by the conventional method. To understand the higher catalytic properties, the structure of 1 at. % Pd/CeO2 catalyst material has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. The diffraction lines corresponding to Pd or PdO are not observed in the high-resolution XRD pattern of 1 at. % Pd/CeO2. The structure of 1 at. % Pd/CeO2 could be refined for the composition of Ce0.99Pd0.01O1.90 in the fluorite structure with 5% oxide ion vacancy. Pd(3d) peaks in the XPS in I at. % Pd/CeO2 are shifted by 3 eV indicating that Pd is in a highly ionic +2 state. EXAFS studies show the average coordination number of 3 around Pd2+ ion in the first shell of 1 at. % Pd/CeO2 at a distance of 2.02 Angstrom, instead of 4 as in PdO. The second shell at 2.72 Angstrom is due to Pd-Pd correlation which is larger than 2.69 Angstrom in PdO. The third shell at 3.31 Angstrom having 7 coordination is absent either in Pd metal or PdO, which can be attributed to -Pd2+-Ce4+- correlation. Thus, 1 at. % Pd/CeO2 forms the Ce1-xPdxO2-delta type of solid solution having -Pd2+-O-2-Ce4+- kinds of linkages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze recent experimental results of Sundström and Gillbro by using the theory of Bagchi, Fleming and Oxtoby. The experimental results are in good agreement with this theory, but not with the earlier theory of Förster and Hoffmann. By fitting the new experimental results to the theory, we obtain approximate estimates of the frequency of the excited surface (assumed harmonic) and the width of the sink function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conformational properties of foldamers generated from alpha gamma hybrid peptide sequences have been probed in the model sequence Boc-Aib-Gpn-Aib-Gpn-NHMe. The choice of alpha-aminoisobutyryl (Aib) and gabapentin (Gpn) residues greatly restricts sterically accessible coil formational space. This model sequence was anticipated to be a short segment of the alpha gamma C-12 helix, stabilized by three successive 4 -> 1 hydrogen bonds, corresponding to a backbone-expanded analogue of the alpha polypeptide 3(10)-helix. Unexpectedly, three distinct crystalline polymorphs were characterized in the solid state by X-ray diffraction. In one form, two successive C-12 hydrogen bonds were obtained at the N-terminus, while a novel C-17 hydrogen-bonded gamma alpha gamma turn was observed at the C-terminus. In the other two polymorphs, isolated C-9 and C-7 hydrogen-bonded turns were observed at Gpn (2) and Gpn (4). Isolated C-12 and C-9 turns were also crystallographically established in the peptides Boc-Aib-Gpn-Aib-OMe and Boc-Gpn-Aib-NHMe, respectively. Selective line broadening of NH resonances and the observation of medium range NH(i)<-> NH(i+2) NOEs established the presence of conformational heterogeneity for the tetrapeptide in CDCl3 solution. The NMR results are consistent with the limited population of the continuous C-12 helix conformation. Lengthening of the (alpha gamma)(n) sequences in the nonapeptides Boc-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Xxx (Xxx = Aib, Leu) resulted in the observation of all of the sequential NOEs characteristic of an alpha gamma C-12 helix. These results establish that conformational fragility is manifested in short hybrid alpha gamma sequences despite the choice of conformationally constrained residues, while stable helices are formed on chain extension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that the numerical accuracy of a series solution to a boundary-value problem by the direct method depends on the technique of approximate satisfaction of the boundary conditions and on the stage of truncation of the series. On the other hand, it does not appear to be generally recognized that, when the boundary conditions can be described in alternative equivalent forms, the convergence of the solution is significantly affected by the actual form in which they are stated. The importance of the last aspect is studied for three different techniques of computing the deflections of simply supported regular polygonal plates under uniform pressure. It is also shown that it is sometimes possible to modify the technique of analysis to make the accuracy independent of the description of the boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have found an exact similarity solution of the point explosion problem in the case when the total energy of the shock wave that is produced is not constant but decreases with time and when the loss due to radiation escape is significant. We have compared the results of our exact solution with those of exact numerical solutions of Elliot and Wang and have explained the cause why our solution differs from theirs in certain aspects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time dependent response of a polar solvent to a changing charge distribution is studied in solvation dynamics. The change in the energy of the solute is measured by a time domain Stokes shift in the fluorescence spectrum of the solute. Alternatively, one can use sophisticated non-linear optical spectroscopic techniques to measure the energy fluctuation of the solute at equilibrium. In both methods, the measured dynamic response is expressed by the normalized solvation time correlation function, S(t). The latter is found to exhibit uniquefeatures reflecting both the static and dynamic characteristics of each solvent. For water, S(t) consists of a dominant sub-50 fs ultrafast component, followed by a multi-exponential decay. Acetonitrile exhibitsa sub-100 fs ultrafast component, followed by an exponential decay. Alcohols and amides show features unique to each solvent and solvent series. However, understanding and interpretation of these results have proven to be difficult, and often controversial. Theoretical studiesand computer simulations have greatly facilitated the understanding ofS(t) in simple systems. Recently solvation dynamics has been used extensively to explore dynamics of complex systems, like micelles and reverse micelles, protein and DNA hydration layers, sol-gel mixtures and polymers. In each case one observes rich dynamical features, characterized again by multi-exponential decays but the initial and final time constants are now widely separated. In this tutorial review, we discuss the difficulties in interpreting the origin of the observed behaviour in complex systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solid solution of the type Ba5x/2Bi(1-x)5/3Nb5O15 has been identified in the BaO-Bi2O3-Nb2O5 system for the first time. The limits of the solid solution are within the range 0.52 <= x <= 0.80. The compositions x = 0.52, 0.60, 0.72, 0.77, 0.78, and 0.80 were synthesized by the solid-state technique from the starting materials in stoichiometric quantities. The powder X-ray patterns of all the phases in the domain indicate a structural similarity to tetragonal tungsten bronzes (TTBs). The compositions below x = 0.52 and those above x = 0.80 exhibit barium niobate and bismuth niobate impurities, respectively. Single crystals of the composition x = 0.77 were obtained by the melt cooling technique. The crystal structure of Ba3.85/2Bi1.15/3Nb5O15 (x = 0.77) was solved in the tetragonal space group P4bm (No. 100) with a = 12.4938 (14) angstrom, c = 3.9519 (2) A, V = 616.87 (10) angstrom(3), and Z = 2 and was refined to an R index of 0.034. Dielectric measurements on all the phases indicate a typical relaxor behavior with a broad phase transition at T-m approximate to 300 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microscopic relations between single-particle orientational relaxation time (T, ) , dielectric relaxation time ( T ~ )a,n d many-body orientational relaxation time ( T ~o)f a dipolar liquid are derived. We show that both T~ and T~ are influenced significantly by many-body effects. In the present theory, these many-body effects enter through the anisotropic part of the two-particle direct correlation function of the polar liquid. We use mean-spherical approximation (MSA) for dipolar hard spheres for explicit numerical evaluation of the relaxation times. We find that, although the dipolar correlation function is biexponential, the frequency-dependent dielectric constant is of simple Debye form, with T~ equal to the transverse polarization relaxation time. The microscopic T~ falls in between Debye and Onsager-Glarum expressions at large values of the static dielectric constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A small-cluster approximation has been used to calculate the activation barriers for the d.c. conductivity in ionic glasses. The main emphasis of this approach is on the importance of the hitherto ignored polarization energy contribution to the total activation energy. For the first time it has been demonstrated that the d.c. conductivity activation energy can be calculated by considering ionic migration to a neighbouring vacancy in a smali cluster of ions consisting of face-sharing anion polyhedra. The activation energies from the model calculations have been compared with the experimental values in the case of highly modified lithium thioborate glasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we present a new, general but simple, microscopic expression for time-dependent solvation energy of an ion. This expression is surprisingly similar to the expression for the time-dependent dielectric friction on a moving ion. We show that both the Chandra-Bagchi and the Fried-Mukamel formulations of solvation dynamics can be easily derived from this expression. This expression leads to an almost perfect agreement of the theory with all the available computer simulation results. Second, we show here for the first time that the mobility of a light solute ion can significantly accelerate its own solvation, specially in the underdamped limit. The latter result is also in excellent agreement with the computer simulations.