30 resultados para autotrophic respiration
em Indian Institute of Science - Bangalore - Índia
Resumo:
The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 μg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 μg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.
Resumo:
The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 µg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 µg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.
Resumo:
The respiratory rates of mycelia of the mesophilic fungus, Aspergillus niger, and the thermophilic fungus, Thermomyces lanuginosus, were comparable at their respective temperature optima for growth. The respiratory rate of A. niger was independent of changes in temperature between 15 and 40 C. The respiratory rate of T. lanuginosus increased with increase in temperature between 25 and 55 C.
Resumo:
The present study deals with the in vitro and in vivo effects of methyl isocyanate (MIC) on rat brain mitochondrial function. Addition of MIC to tightly coupled brain mitochondria in vitro resulted in a mild stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/0 ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fourfold) to the inhibitory action of MIC than succinate while cytochrome oxidase was unaffected. Administration of MIC subcutaneously at a lethal dose affected respiration only with glutamate + malate as the substrate (site I) and caused a 20% decrease in state 3 oxidation leading to a significant decrease in respiratory control index while state 4 respiration and ADP/O ratio remained unaffected. As both the malondialdehyde and iron contents of brain mitochondria were not altered, it may be inferred that the observed in vivo inhibition of state 3 oxidation is induced by MIC through systemic stagnant hypoxia leading to ischemia of brain, which further contributes to the cerebral hypoxia.
Resumo:
Previous work has shown that irrespective of the route of exposure methyl isocyanate (MIC) caused acute lactic acidosis in rats (Jeevaratnam et al., Arch. Environ. Contam. Toxicol. 19, 314�319, 1990) and the hypoxia was of stagnant type due to tissue hypoperfusion resulting from hypovolemic hypotension in rabbits administered MIC subcutaneously (Jeevarathinam et al., Toxicology 51, 223�240, 1988). The present study was designed to investigate whether MIC could induce histotoxic hypoxia through its effects on mitochondrial respiration. Male Wistar rats were used for liver mitochondrial and submitochondrial particle (SMP) preparation. Addition of MIC to tightly coupled mitochondria in vitro resulted in stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/O ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fiveto sixfold) to the inhibitory action of MIC than succinate while cytochrome oxidase remained unaffected. MIC induced twofold delay in the onset of anerobiosis, and cytochrome b reduction in SMP with NADH in vitro confirms inhibition of electron transport at complex I region. MIC also stimulated the ATPase activity in tightly coupled mitochondria while lipid peroxidation remained unaffected. As its hydrolysis products, methylamine and N,N?-dimethylurea failed to elicit any change in vitro; these effects reveal that MIC per se acts as an inhibitor of electron transport and a weak uncoupler. Administration of MIC sc at lethal dose caused a similar change only with NAD+-linked substrates, reflecting impairment of mitochondrial respiration at complex I region and thereby induction of histotoxic hypoxia in vivo.
Resumo:
Background. Respiratory irregularity has been previously reported in patients with panic disorder using time domain measures. However, the respiratory signal is not entirely linear and a few previous studies used approximate entropy (APEN), a measure of regularity of time series. We have been studying APEN and other nonlinear measures including a measure of chaos, the largest Lyapunov exponent (LLE) of heart rate time series, in some detail. In this study, we used these measures of respiration to compare normal controls (n = 18) and patients with panic disorder (n = 22) in addition to the traditional time domain measures of respiratory rate and tidal volume. Methods: Respiratory signal was obtained by the Respitrace system using a thoracic and an abdominal belt, which was digitized at 500 Hz. Later, the time series were constructed at 4 Hz, as the highest frequency in this signal is limited to 0.5 Hz. We used 256 s of data (1,024 points) during supine and standing postures under normal breathing and controlled breathing at 12 breaths/min. Results: APEN was significantly higher in patients in standing posture during normal as well as controlled breathing (p = 0.002 and 0.02, respectively). LLE was also significantly higher in standing posture during normal breathing (p = 0.009). Similarly, the time domain measures of standard deviations and the coefficient of variation (COV) of tidal volume (TV) were significantly higher in the patient group (p = 0.02 and 0.004, respectively). The frequency of sighs was also higher in the patient group in standing posture (p = 0.02). In standing posture, LLE (p < 0.05) as well as APEN (p < 0.01) contributed significantly toward the separation of the two groups over and beyond the linear measure, i.e. the COV of TV. Conclusion: These findings support the previously described respiratory irregularity in patients with panic disorder and also illustrate the utility of nonlinear measures such as APEN and LLE as additional measures toward a better understanding of the abnormalities of respiratory physiology in similar patient populations as the correlation between LLE, APEN and some of the time domain measures only explained up to 50-60% of the variation. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
Design and development of a piezoelectric polyvinylidene fluoride (PVDF) thin film based nasal sensor to monitor human respiration pattern (RP) from each nostril simultaneously is presented in this paper. Thin film based PVDF nasal sensor is designed in a cantilever beam configuration. Two cantilevers are mounted on a spectacle frame in such a way that the air flow from each nostril impinges on this sensor causing bending of the cantilever beams. Voltage signal produced due to air flow induced dynamic piezoelectric effect produce a respective RP. A group of 23 healthy awake human subjects are studied. The RP in terms of respiratory rate (RR) and Respiratory air-flow changes/alterations obtained from the developed PVDF nasal sensor are compared with RP obtained from respiratory inductance plethysmograph (RIP) device. The mean RR of the developed nasal sensor (19.65 +/- A 4.1) and the RIP (19.57 +/- A 4.1) are found to be almost same (difference not significant, p > 0.05) with the correlation coefficient 0.96, p < 0.0001. It was observed that any change/alterations in the pattern of RIP is followed by same amount of change/alterations in the pattern of PVDF nasal sensor with k = 0.815 indicating strong agreement between the PVDF nasal sensor and RIP respiratory air-flow pattern. The developed sensor is simple in design, non-invasive, patient friendly and hence shows promising routine clinical usage. The preliminary result shows that this new method can have various applications in respiratory monitoring and diagnosis.
Resumo:
Effects of fluctuations in habitat temperature (18-30 degrees) on mitochondrial respiratory behavior and oxidative metabolic responses in the euryhaline ectotherm Scylla serrate are not fully understood. In the present study, effects of different temperatures ranging from 12 to 40 degrees C on glutamate and succinate mediated mitochondrial respiration, respiratory control ratio (RCR), ATP generation rate, ratio for the utilization of phosphate molecules per atomic oxygen consumption (P/O), levels of lipid peroxidation and H2O2 in isolated gill mitochondria of S. serrata are reported. The pattern of variation in the studied parameters was similar for the two substrates at different temperatures. The values recorded for RCR ( >= 3) and P/O ratio (1.4-2.7) at the temperature range of 15-25 degrees C were within the normal range reported for other animals (3-10 for RCR and 1.5-3 for P/O). Values for P/O ratio, ATP generation rate and RCR were highest at 18 degrees C when compared to the other assay temperatures. However, at low and high extreme temperatures, i.e. at 12 and 40 degrees C, states III and IV respiration rates were not clearly distinguishable from each other indicating that mitochondria were completely uncoupled. Positive correlations were noticed between temperature and the levels of both lipid peroxidation and H2O2. It is inferred that fluctuations on either side of ambient habitat temperature may adversely influence mitochondria respiration and oxidative metabolism in S. serrata. The results provide baseline data to understand the impacts of acute changes in temperature on ectotherms inhabiting estuarine or marine environments. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Mycobacterium tuberculosis (Mtb) adaptation to hypoxia is considered crucial to its prolonged latent persistence in humans. Mtb lesions are known to contain physiologically heterogeneous microenvironments that bring about differential responses from bacteria. Here we exploit metabolic variability within biofilm cells to identify alternate respiratory polyketide quinones (PkQs) from both Mycobacterium smegmatis (Msmeg) and Mtb. PkQs are specifically expressed in biofilms and other oxygen-deficient niches to maintain cellular bioenergetics. Under such conditions, these metabolites function as mobile electron carriers in the respiratory electron transport chain. In the absence of PkQs, mycobacteria escape from the hypoxic core of biofilms and prefer oxygenrich conditions. Unlike the ubiquitous isoprenoid pathway for the biosynthesis of respiratory quinones, PkQs are produced by type III polyketide synthases using fatty acyl-CoA precursors. The biosynthetic pathway is conserved in several other bacterial genomes, and our study reveals a redox-balancing chemicocellular process in microbial physiology.
Resumo:
A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.
Resumo:
Trehalose, an alpha,alpha-diglucoside, induced a rapid blackening and death of shoot tips of Cuscuta reflexa (dodder) cultured in vitro. The onset of toxic symptom was delayed if any of the several sugars which support the in vitro growth of Cuscuta was supplied with trehalose. The rate of trehalose uptake or its accumulation in the tissue was not affected by sugar cofeeding. The levels of total and reducing sugars declined appreciably in the trehalose-fed shoot tip explants compared to control tissue cultured in absence of a carbon source. This was not due to an increased rate of respiration of the trehalose-treated tissue. In shoot tips cultured in presence of both trehalose and sucrose, the decline in total and reducing sugars was curtailed. There was a marked fall in the level of sucrose; and invertase activity was higher in trehalose-fed shoot tips. The incorporation of label from [14C]glucose into sucrose in the shoot tip explant was reduced as early as 12 h of trehalose feeding. The results suggest that increased utilization of sucrose as well as an inhibition of its synthesis contribute to the drastic fall in the sucrose content upon trehalose feeding.
Toxicity in Cuscuta reflexa Sucrose Content Decreases In Shoot Tips Upon Trehalose Feeding Trehalose
Resumo:
Trehalose, an {alpha},{alpha}-diglucoside, induced a rapid blackening and death of shoot tips of Cuscuta reflexa (dodder) cultured in vitro. The onset of toxic symptom was delayed if any of the several sugars which support the in vitro growth of Cuscuta was supplied with trehalose. The rate of trehalose uptake or its accumulation in the tissue was not affected by sugar cofeeding. The levels of total and reducing sugars declined appreciably in the trehalose-fed shoot tip explants compared to control tissue cultured in absence of a carbon source. This was not due to an increased rate of respiration of the trehalose-treated tissue. In shoot tips cultured in presence of both trehalose and sucrose, the decline in total and reducing sugars was curtailed. There was a marked fall in the level of sucrose; and invertase activity was higher in trehalose-fed shoot tips. The incorporation of label from [14C]glucose into sucrose in the shoot tip explant was reduced as early as 12 h of trehalose feeding. The results suggest that increased utilization of sucrose as well as an inhibition of its synthesis contribute to the drastic fall in the sucrose content upon trehalose feeding
Resumo:
A purified antitumor protein from the proteinaceous crystal of Bacillus thuringiensis subsp. thuringiensis inhibits the growth of Yoshida ascites sarcoma both in vivo and in vitro. Exogenous respiration of the tumor cells was unaffected by the protein at a concentration as high as 500 µg/ml. The antitumor protein inhibits the uptake and incorporation of labeled precursors into macromolecules. However, the ratio of incorporation over uptake is not affected by the protein. Further, the protein brings about the leakage of 260-nm-absorbing material, proteins, and 32P-labeled cellular constituents from the Yoshida ascites sarcoma cells. The results show that the action of the antitumor protein appears to alter the cellular permeability of the tumor cells.
Resumo:
Magmas, a conserved mammalian protein essential for eukaryotic development, is overexpressed in prostate carcinomas and cells exposed to granulocyte-macrophage colony-stimulating factor (GM-CSF). Reduced Magmas expression resulted in decreased proliferative rates in cultured cells. However, the cellular function of Magmas is still elusive. In this report, we have showed that human Magmas is an ortholog of Saccharomyces cerevisiae Pam16 having similar functions and is critical for protein translocation across mitochondrial inner membrane. Human Magmas shows a complete growth complementation of delta pam16 yeast cells at all temperatures. On the basis of our analysis, we report that Magmas localizes into mitochondria and is peripherally associated with inner mitochondrial membrane in yeast and humans. Magmas forms a stable subcomplex with J-protein Pam18 or DnaJC19 through its C-terminal region and is tethered to TIM23 complex of yeast and humans. Importantly, amino acid alterations in Magmas leads to reduced stability of the subcomplex with Pam18 that results in temperature sensitivity and in vivo protein translocation defects in yeast cells. These observations highlight the central role of Magmas in protein import and mitochondria biogenesis. In humans, absence of a functional DnaJC19 leads to dilated cardiac myophathic syndrome (DCM), a genetic disorder with characteristic features of cardiac myophathy and neurodegeneration. We propose that the mutations resulting in decreased stability of functional Magmas:DnaJC19 subcomplex at human TIM23 channel leads to impaired protein import and cellular respiration in DCM patients. Together, we propose a model showing how Magmas:DnaJC19 subcomplex is associated with TIM23 complex and thus regulates mitochondrial import process.