92 resultados para Weight-Bearing
em Indian Institute of Science - Bangalore - Índia
Resumo:
The ultimate bearing capacity of a number of multiple strip footings, identically spaced and equally loaded to failure at the same time,is computed by using the lower bound limit analysis in combination with finite elements. The efficiency factor due to the component of soil unit weight, is computed with respect to changes in the clear spacing (xi(gamma)) between the footings. It is noted that the failure load for a footing in the group becomes always greater than that of a single isolated footing. The values of xi(gamma) for the smooth footings are found to be always lower than the rough footings. The values ofxi(gamma) are found to increase continuously with a decrease in the spacing between footings. As compared to the available theoretical and experimental results reported in literature, the present analysis provides generally a little lower values of xi(gamma). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
By using the lower bound limit analysis in conjunction with finite elements and linear programming, the bearing capacity factors due to cohesion, surcharge and unit weight, respectively, have been computed for a circular footing with different values of phi. The recent axisymmetric formulation proposed by the authors under phi = 0 condition, which is based on the concept that the magnitude of the hoop stress (sigma(theta)) remains closer to the least compressive normal stress (sigma(3)), is extended for a general c-phi soil. The computational results are found to compare quite well with the available numerical results from literature. It is expected that the study will be useful for solving various axisymmetric geotechnical stability problems. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The effect of horizontal earthquake body forces on the bearing capacity of foundations has been examined computationally in a rigorous manner by employing the method of stress characteristics. The bearing capacity factors N-c, N-q and N-y, due to the components of soil cohesion, ground surcharge pressure and soil unit weight respectively, have been plotted as a function of earthquake acceleration coefficient (a(h)) for different values of soil friction angle (phi). The inclusion of earthquake body forces causes a considerable reduction in the bearing capacity factors. The bearing capacity factors N-c and N-q are seen to be approximately of the same magnitude as those reported in the literature on the basis of different solution methods. However, the obtained values of N-y are found to be significantly smaller than the available results. The nature of the pressure distribution along the footing base and the geometry of the observed failure patterns vary with the consideration of earthquake body forces.
Resumo:
An easy access to a library of simple organic salts derived from tert-butoxycarbonyl (Boc)-protected L-amino acids and two secondary amines (dicyclohexyl- and dibenzyl amine) are synthesized following a supramolecular synthon rationale to generate a new series of low molecular weight gelators (LMWGs). Out of the 12 salts that we prepared, the nitrobenzene gel of dicyclohexylammonium Boc-glycinate (GLY.1) displayed remarkable load-bearing, moldable and self-healing properties. These remarkable properties displayed by GLY.1 and the inability to display such properties by its dibenzylammonium counterpart (GLY.2) were explained using microscopic and rheological data. Single crystal structures of eight salts displayed the presence of a 1D hydrogen-bonded network (HBN) that is believed to be important in gelation. Powder X-ray diffraction in combination with the single crystal X-ray structure of GLY.1 clearly established the presence of a 1D hydrogen-bonded network in the xerogel of the nitrobenzene gel of GLY.1. The fact that such remarkable properties arising from an easily accessible (salt formation) small molecule are due to supramolecular (non-covalent) interactions is quite intriguing and such easily synthesizable materials may be useful in stress-bearing and other applications.
Resumo:
Bearing capacity factors because of the components of cohesion, surcharge, and unit weight, respectively, have been computed for smooth and rough ring footings for different combinations of r(i)= r(o) and. by using lower and upper bound theorems of the limit analysis in conjunction with finite elements and linear optimization, where r(i) and r(o) refer to the inner and outer radii of the ring, respectively. It is observed that for a smooth footing with a given value of r(o), the magnitude of the collapse load decreases continuously with an increase in r(i). Conversely, for a rough base, for a given value of r(o), hardly any reduction occurs in the magnitude of the collapse load up to r(i)= r(o) approximate to 0.2, whereas for r(i)= r(o) > 0.2, the magnitude of the collapse load, similar to that of a smooth footing, decreases continuously with an increase in r(i)= r(o). The results from the analysis compare reasonably well with available theoretical and experimental data from the literature. (C) 2015 American Society of Civil Engineers.
Resumo:
The bearing capacity of a circular footing lying over fully cohesive strata, with an overlaying sand layer, is computed using the axisymmetric lower bound limit analysis with finite elements and linear optimization. The effects of the thickness and the internal friction angle of the sand are examined for different combinations of c(u)/(gamma b) and q, where c(u)=the undrained shear strength of the cohesive strata, gamma=the unit weight of either layer, b=the footing radius, and q=the surcharge pressure. The results are given in the form of a ratio (eta) of the bearing capacity with an overlaying sand layer to that for a footing lying directly over clayey strata. An overlaying medium dense to dense sand layer considerably improves the bearing capacity. The improvement continuously increases with decreases in c(u)/(gamma b) and increases in phi and q/(gamma b). A certain optimum thickness of the sand layer exists beyond which no further improvement occurs. This optimum thickness increases with an increase in 0 and q and with a decrease in c(u)/(gamma b). Failure patterns are also drawn to examine the inclusion of the sand layer. (C) 2015 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
Resumo:
Four Cu bearing alloys of nominal composition Zr25Ti25Cu50, Zr34Ti16Cu50, Zr25Hf25Cu50 and Ti25Hf25Cu50 have been rapidly solidified in order to produce ribbons. All the alloys become amorphous after meltspinning. In the Zr34Ti16Cu50 alloy localized precipitation of cF24 Cu5Zr phase can be observed in the amorphous matrix. The alloys show a tendency of phase separation at the initial stages of crystallization. The difference in crystallization behavior of these alloys with Ni bearing ternary alloys can be explained by atomic size, binary heat of mixing and Mendeleev number. It has been observed that both Laves and Anti-Laves phase forming compositions are suitable for glass formation. The structures of the phases, precipitated during rapid solidification and crystallization can be viewed in terms of Bernal deltahedra and Frank-Kasper polyhedra.
Resumo:
The potential benefits of providing geocell reinforced sand mattress over clay subgrade with void have been investigated through a series of laboratory scale model tests. The parameters varied in the test programme include, thickness of unreinforced sand layer above clay bed, width and height of geocell mattress, relative density of the sand fill in the geocells, and influence of an additional layer of planar geogrid placed at the base of the geocell mattress. The test results indicate that substantial improvement in performance can be obtained with the provision of geocell mattress, of adequate size, over the clay subgrade with void. In order to have beneficial effect, the geocell mattress must spread beyond the void at least a distance equal to the diameter of the void. The influence of the void over the performance of the footing reduces for height of geocell mattress greater than 1.8 times the diameter of the footing. Better improvement in performance is obtained for geocells filled with dense soil. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We present systematic investigations of buckling in Langmuir monolayers of polyvinyl acetate formed at the air-water interface. On compression the polymer monolayers are converted to a continuous membrane with a thickness of ~2–3 nm of well-defined periodicity, lambdab. Above a certain surface concentration the membrane undergoes a morphological transition buckling, leading to the formation of striped patterns. The periodicity seems to depend on molecular weight as per the predictions of the gravity-bending buckling formalism of Milner et al. for fluidlike films on water. However anomalously low values of bending rigidity and Young's modulus are obtained using this formalism. Hence we have considered an alternative model of buckling-based solidlike films on viscoelastic substrates. The values of bending rigidity and Young's modulus obtained by this method, although lower than expected, are closer to the bulk values. Remarkably, no buckling is found to occur above a certain molecular weight. We have tried to explain the observed molecular-weight dependence in terms of the variation in isothermal compressive modulus of the monolayers with surface concentration as well as provided possible explanations for the obtained low values of mechanical properties similar to that observed for ultrathin polymer films.
Resumo:
Bearing capacity factor N-c for axially loaded piles in clays whose cohesion increases linearly with depth has been estimated numerically under undrained (phi=0) condition. The Study follows the lower bound limit analysis in conjunction With finite elements and linear programming. A new formulation is proposed for solving an axisymmetric geotechnical stability problem. The variation of N-c with embedment ratio is obtained for several rates of the increase of soil cohesion with depth; a special case is also examined when the pile base was placed on the stiff clay stratum overlaid by a soft clay layer. It was noticed that the magnitude of N-c reaches almost a constant value for embedment ratio greater than unity. The roughness of the pile base and shaft affects marginally the magnitudes of N-c. The results obtained from the present study are found to compare quite well with the different numerical solutions reported in the literature.
Resumo:
The results from laboratory model tests and numerical simulations on square footings resting on sand are presented. Bearing capacity of footings on geosynthetic reinforced sand is evaluated and the effect of various reinforcement parameters like the type and tensile strength of geosynthetic material, amount of reinforcement, layout and configuration of geosynthetic layers below the footing on the bearing capacity improvement of the footings is studied through systemati model studies. A steel tank of size 900 x 900 x 600 mm is used for conducting model tests. Four types of grids, namely strong biaxial geogrid, weak biaxial geogrid, uniaxial geogrid and a geonet, each with different tensile strength, are used in the tests. Geosynthetic reinforcement is provided in the form of planar layers, varying the depth of reinforced zone below the footing, number of geosynthetic layers within the reinforced zone and the width of geosynthetic layers in different tests. Influence of all these parameters on the bearing capacity improvement of square footing and its settlement is studied by comparing with the test on unreinforced sand. Results show that the effective depth of reinforcement is twice the width of the footing and optimum spacing of geosynthetic layers is half the width of the footing. It is observed that the layout and configuration of reinforcement play a vital role in bearing capacity improvement rather than the tensile strength of the geosynthetic material. Experimental observations are supported by the findings from numerical analyses.
Resumo:
Some tribological properties of a mica-dispersed Al-4%Cu-1.5%Mg alloy cast by a conventional foundry technique are reported. The effect of mica dispersion on the wear rate and journal bearing performance of the matrix alloy was studied under different pressures and under different interface friction conditions. The dispersion of mica was found (a) to increase the wear rate of the base alloy, (b) to decrease the temperature rise during wear and (c) to improve the ability of the alloy to resist seizure.
Resumo:
Abstract is not available.
Resumo:
Site-specific geotechnical data are always random and variable in space. In the present study, a procedure for quantifying the variability in geotechnical characterization and design parameters is discussed using the site-specific cone tip resistance data (qc) obtained from static cone penetration test (SCPT). The parameters for the spatial variability modeling of geotechnical parameters i.e. (i) existing trend function in the in situ qc data; (ii) second moment statistics i.e. analysis of mean, variance, and auto-correlation structure of the soil strength and stiffness parameters; and (iii) inputs from the spatial correlation analysis, are utilized in the numerical modeling procedures using the finite difference numerical code FLAC 5.0. The influence of consideration of spatially variable soil parameters on the reliability-based geotechnical deign is studied for the two cases i.e. (a) bearing capacity analysis of a shallow foundation resting on a clayey soil, and (b) analysis of stability and deformation pattern of a cohesive-frictional soil slope. The study highlights the procedure for conducting a site-specific study using field test data such as SCPT in geotechnical analysis and demonstrates that a few additional computations involving soil variability provide a better insight into the role of variability in designs.