75 resultados para WAVE METHOD
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper an attempt has been made to evaluate the spatial variability of the depth of weathered and engineering bedrock in Bangalore, south India using Multichannel Analysis of Surface Wave (MASW) survey. One-dimensional MASW survey has been carried out at 58 locations and shear-wave velocities are measured. Using velocity profiles, the depth of weathered rock and engineering rock surface levels has been determined. Based on the literature, shear-wave velocity of 330 ± 30 m/s for weathered rock or soft rock and 760 ± 60 m/s for engineering rock or hard rock has been considered. Depths corresponding to these velocity ranges are evaluated with respect to ground contour levels and top surface levels have been mapped with an interpolation technique using natural neighborhood. The depth of weathered rock varies from 1 m to about 21 m. In 58 testing locations, only 42 locations reached the depths which have a shear-wave velocity of more than 760 ± 60 m/s. The depth of engineering rock is evaluated from these data and it varies from 1 m to about 50 m. Further, these rock depths have been compared with a subsurface profile obtained from a two-dimensional (2-D) MASW survey at 20 locations and a few selected available bore logs from the deep geotechnical boreholes.
Resumo:
The efficiency of track foundation material gradually decreases due to insufficient lateral confinement, ballast fouling, and loss of shear strength of the subsurface soil under cyclic loading. This paper presents characterization of rail track subsurface to identify ballast fouling and subsurface layers shear wave velocity using seismic survey. Seismic surface wave method of multi-channel analysis of surface wave (MASW) has been carried out in the model track and field track for finding out shear wave velocity of the clean and fouled ballast and track subsurface. The shear wave velocity (SWV) of fouled ballast increases with increase in fouling percentage, and reaches a maximum value and then decreases. This character is similar to typical compaction curve of soil, which is used to define optimum and critical fouling percentage (OFP and CFP). Critical fouling percentage of 15 % is noticed for Coal fouled ballast and 25 % is noticed for clayey sand fouled ballast. Coal fouled ballast reaches the OFP and CFP before clayey sand fouled ballast. Fouling of ballast reduces voids in ballast and there by decreases the drainage. Combined plot of permeability and SWV with percentage of fouling shows that after critical fouling point drainage condition of fouled ballast goes below acceptable limit. Shear wave velocities are measured in the selected location in the Wollongong field track by carrying out similar seismic survey. In-situ samples were collected and degrees of fouling were measured. Field SWV values are more than that of the model track SWV values for the same degree of fouling, which might be due to sleeper's confinement. This article also highlights the ballast gradation widely followed in different countries and presents the comparison of Indian ballast gradation with international gradation standards. Indian ballast contains a coarser particle size when compared to other countries. The upper limit of Indian gradation curve matches with lower limit of ballast gradation curves of America and Australia. The ballast gradation followed by Indian railways is poorly graded and more favorable for the drainage conditions. Indian ballast engineering needs extensive research to improve presents track conditions.
Resumo:
The accurate solution of 3D full-wave Method of Moments (MoM) on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretizations may not be fine enough to capture rapid spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates large number of solution variables and therefore requires an unnecessarily large matrix solution. In this work, a suitable refinement criterion for MoM based electromagnetic package-board extraction is proposed and the advantages of the adaptive strategy are demonstrated from both accuracy and speed perspectives.
Resumo:
3-D full-wave method of moments (MoM) based electromagnetic analysis is a popular means toward accurate solution of Maxwell's equations. The time and memory bottlenecks associated with such a solution have been addressed over the last two decades by linear complexity fast solver algorithms. However, the accurate solution of 3-D full-wave MoM on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretization may not be fine enough to capture spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates a large number of solution variables and therefore requires an unnecessarily large matrix solution. In this paper, different refinement criteria are studied in an adaptive mesh refinement platform. Consequently, the most suitable conductor mesh refinement criterion for MoM-based electromagnetic package-board extraction is identified and the advantages of this adaptive strategy are demonstrated from both accuracy and speed perspectives. The results are also compared with those of the recently reported integral equation-based h-refinement strategy. Finally, a new methodology to expedite each adaptive refinement pass is proposed.
The partition of unity finite element method for elastic wave propagation in Reissner-Mindlin plates
Resumo:
This paper reports a numerical method for modelling the elastic wave propagation in plates. The method is based on the partition of unity approach, in which the approximate spectral properties of the infinite dimensional system are embedded within the space of a conventional finite element method through a consistent technique of waveform enrichment. The technique is general, such that it can be applied to the Lagrangian family of finite elements with specific waveform enrichment schemes, depending on the dominant modes of wave propagation in the physical system. A four-noded element for the Reissner-indlin plate is derived in this paper, which is free of shear locking. Such a locking-free property is achieved by removing the transverse displacement degrees of freedom from the element nodal variables and by recovering the same through a line integral and a weak constraint in the frequency domain. As a result, the frequency-dependent stiffness matrix and the mass matrix are obtained, which capture the higher frequency response with even coarse meshes, accurately. The steps involved in the numerical implementation of such element are discussed in details. Numerical studies on the performance of the proposed element are reported by considering a number of cases, which show very good accuracy and low computational cost. Copyright (C)006 John Wiley & Sons, Ltd.
Resumo:
Time-domain-finite-wave analysis of the engine exhaust system is usually done using the method of characteristics. This makes use of either the moving frame method, or the stationary frame method. The stationary frame method is more convenient than its counterpart inasmuch as it avoids the tedium of graphical computations. In this paper (part I), the stationary-frame computational scheme along with the boundary conditions has been implemented. The analysis of a uniform tube, cavity-pipe junction including the engine and the radiation ends, and also the simple area discontinuities has been presented. The analysis has been done accounting for wall friction and heat-transfer for a one-dimensional unsteady flow. In the process, a few inconsistencies in the formulations reported in the literature have been pointed out and corrected. In the accompanying paper (part II) results obtained from the simulation are shown to be in good agreement with the experimental observations.
Resumo:
Time-domain-finite-wave analysis of engine exhaust systems is usually carried out by means of the method of characteristics. The theory and the computational details of the stationary-frame method have been worked out in the accompanying paper (part I). In this paper (part II), typical computed results are given and discussed. A setup designed for experimental corroboration is described. The results obtained from the simulation are found to be in good agreement with experimental observations.
Resumo:
Many physical problems can be modeled by scalar, first-order, nonlinear, hyperbolic, partial differential equations (PDEs). The solutions to these PDEs often contain shock and rarefaction waves, where the solution becomes discontinuous or has a discontinuous derivative. One can encounter difficulties using traditional finite difference methods to solve these equations. In this paper, we introduce a numerical method for solving first-order scalar wave equations. The method involves solving ordinary differential equations (ODEs) to advance the solution along the characteristics and to propagate the characteristics in time. Shocks are created when characteristics cross, and the shocks are then propagated by applying analytical jump conditions. New characteristics are inserted in spreading rarefaction fans. New characteristics are also inserted when values on adjacent characteristics lie on opposite sides of an inflection point of a nonconvex flux function, Solutions along characteristics are propagated using a standard fourth-order Runge-Kutta ODE solver. Shocks waves are kept perfectly sharp. In addition, shock locations and velocities are determined without analyzing smeared profiles or taking numerical derivatives. In order to test the numerical method, we study analytically a particular class of nonlinear hyperbolic PDEs, deriving closed form solutions for certain special initial data. We also find bounded, smooth, self-similar solutions using group theoretic methods. The numerical method is validated against these analytical results. In addition, we compare the errors in our method with those using the Lax-Wendroff method for both convex and nonconvex flux functions. Finally, we apply the method to solve a PDE with a convex flux function describing the development of a thin liquid film on a horizontally rotating disk and a PDE with a nonconvex flux function, arising in a problem concerning flow in an underground reservoir.
Resumo:
The paper discusses basically a wave propagation based method for identifying the damage due to skin-stiffener debonding in a stiffened structure. First, a spectral finite element model (SFEM) is developed for modeling wave propagation in general built-up structures, using the concept of assembling 2D spectral plate elements and the model is then used in modeling wave propagation in a skin-stiffener type structure. The damage force indicator (DFI) technique, which is derived from the dynamic stiffness matrix of the healthy stiffened structure (obtained from the SFEM model) along with the nodal displacements of the debonded stiffened structure (obtained from 2D finite element model), is used to identify the damage due to the presence of debond in a stiffened structure.
Resumo:
This paper presents a newly developed wavelet spectral finite element (WFSE) model to analyze wave propagation in anisotropic composite laminate with a transverse surface crack penetrating part-through the thickness. The WSFE formulation of the composite laminate, which is based on the first-order shear deformation theory, produces accurate and computationally efficient results for high frequency wave motion. Transverse crack is modeled in wavenumber-frequency domain by introducing bending flexibility of the plate along crack edge. Results for tone burst and impulse excitations show excellent agreement with conventional finite element analysis in Abaqus (R). Problems with multiple cracks are modeled by assembling a number of spectral elements with cracks in frequency-wavenumber domain. Results show partial reflection of the excited wave due to crack at time instances consistent with crack locations. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a new multiscale method which is capable of coupling atomistic and continuum domains for high frequency wave propagation analysis. The problem of non-physical wave reflection, which occurs due to the change in system description across the interface between two scales, can be satisfactorily overcome by the proposed method. We propose an efficient spectral domain decomposition of the total fine scale displacement along with a potent macroscale equation in the Laplace domain to eliminate the spurious interfacial reflection. We use Laplace transform based spectral finite element method to model the macroscale, which provides the optimum approximations for required dynamic responses of the outer atoms of the simulated microscale region very accurately. This new method shows excellent agreement between the proposed multiscale model and the full molecular dynamics (MD) results. Numerical experiments of wave propagation in a 1D harmonic lattice, a 1D lattice with Lennard-Jones potential, a 2D square Bravais lattice, and a 2D triangular lattice with microcrack demonstrate the accuracy and the robustness of the method. In addition, under certain conditions, this method can simulate complex dynamics of crystalline solids involving different spatial and/or temporal scales with sufficient accuracy and efficiency. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.