8 resultados para Video-analysis
em Indian Institute of Science - Bangalore - Índia
Resumo:
Image and video analysis requires rich features that can characterize various aspects of visual information. These rich features are typically extracted from the pixel values of the images and videos, which require huge amount of computation and seldom useful for real-time analysis. On the contrary, the compressed domain analysis offers relevant information pertaining to the visual content in the form of transform coefficients, motion vectors, quantization steps, coded block patterns with minimal computational burden. The quantum of work done in compressed domain is relatively much less compared to pixel domain. This paper aims to survey various video analysis efforts published during the last decade across the spectrum of video compression standards. In this survey, we have included only the analysis part, excluding the processing aspect of compressed domain. This analysis spans through various computer vision applications such as moving object segmentation, human action recognition, indexing, retrieval, face detection, video classification and object tracking in compressed videos.
Resumo:
Several anuran species use multimodal signals to communicate in diverse social contexts. Our study describes acoustic and visual behaviours of the Small Torrent Frog (Micrixalus aff. saxicola), a diurnal frog endemic to the Western Ghats of India. During agonistic interactions males display advertisement calls, foot-flagging and tapping (foot lifting) behaviours to signal the readiness to defend perching sites in perennial streams. Results from a quantitative video analysis of male–male interactions indicate that footflagging displays were used as directional signals toward the opponent male, but were less abundant than calls. The acoustic and visual signals were not functionally linked. The call of Micrixalus aff. saxicola thereby did not act as an alert signal. Analysis of behavioural transitions revealed that kicking behaviours (physical attacks) significantly elicited kicks from interacting males. We suggest that foot-flagging displays ritualized from this frequently observed fighting technique to reduce physical attacks.
Resumo:
Several anuran species use multimodal signals to communicate in diverse social contexts. Our study describes acoustic and visual behaviours of the Small Torrent Frog (Micrixalus aff. saxicola), a diurnal frog endemic to the Western Ghats of India. During agonistic interactions males display advertisement calls, foot-flagging and tapping (foot lifting) behaviours to signal the readiness to defend perching sites in perennial streams. Results from a quantitative video analysis of male-male interactions indicate that foot-flagging displays were used as directional signals toward the opponent male, but were less abundant than calls. The acoustic and visual signals were not functionally linked. The call of Micrixalus aff. saxicola thereby did not act as an alert signal. Analysis of behavioural transitions revealed that kicking behaviours (physical attacks) significantly elicited kicks from interacting males. We suggest that foot-flagging displays ritualized from this frequently observed fighting technique to reduce physical attacks.
Resumo:
Non-Identical Duplicate video detection is a challenging research problem. Non-Identical Duplicate video are a pair of videos that are not exactly identical but are almost similar.In this paper, we evaluate two methods - Keyframe -based and Tomography-based methods to determine the Non-Identical Duplicate videos. These two methods make use of the existing scale based shift invariant (SIFT) method to find the match between the key frames in first method, and the cross-sections through the temporal axis of the videos in second method.We provide extensive experimental results and the analysis of accuracy and efficiency of the above two methods on a data set of Non- Identical Duplicate video-pair.
Resumo:
Peer to peer networks are being used extensively nowadays for file sharing, video on demand and live streaming. For IPTV, delay deadlines are more stringent compared to file sharing. Coolstreaming was the first P2P IPTV system. In this paper, we model New Coolstreaming (newer version of Coolstreaming) via a queueing network. We use two time scale decomposition of Markov chains to compute the stationary distribution of number of peers and the expected number of substreams in the overlay which are not being received at the required rate due to parent overloading. We also characterize the end-to-end delay encountered by a video packet received by a user and originated at the server. Three factors contribute towards the delay. The first factor is the mean shortest path length between any two overlay peers in terms of overlay hops of the partnership graph which is shown to be O (log n) where n is the number of peers in the overlay. The second factor is the mean number of routers between any two overlay neighbours which is seen to be at most O (log N-I) where N-I is the number of routers in the internet. Third factor is the mean delay at a router in the internet. We provide an approximation of this mean delay E W]. Thus, the mean end to end delay in New Coolstreaming is shown to be upper bounded by O (log E N]) (log N-I) E (W)] where E N] is the mean number of peers at a channel.
Resumo:
We propose a simple, reliable method based on probability of transitions and distribution of adjacent pixel pairs for steganalysis on digital images in spatial domain subjected to Least Significant Bit replacement steganography. Our method is sensitive to the statistics of underlying cover image and is a variant of Sample Pair Method. We use the new method to estimate length of hidden message reliably. The novelty of our method is that it detects from the statistics of the underlying image, which is invariant with embedding, whether the results it calculate are reliable or not. To our knowledge, no steganalytic method so far predicts from the properties of the stego image, whether its results are accurate or not.
Resumo:
Different medium access control (MAC) layer protocols, for example, IEEE 802.11 series and others are used in wireless local area networks. They have limitation in handling bulk data transfer applications, like video-on-demand, videoconference, etc. To avoid this problem a cooperative MAC protocol environment has been introduced, which enables the MAC protocol of a node to use its nearby nodes MAC protocol as and when required. We have found on various occasions that specified cooperative MAC establishes cooperative transmissions to send the specified data to the destination. In this paper we propose cooperative MAC priority (CoopMACPri) protocol which exploits the advantages of priority value given by the upper layers for selection of different paths to nodes running heterogeneous applications in a wireless ad hoc network environment. The CoopMACPri protocol improves the system throughput and minimizes energy consumption. Using a Markov chain model, we developed a model to analyse the performance of CoopMACPri protocol; and also derived closed-form expression of saturated system throughput and energy consumption. Performance evaluations validate the accuracy of the theoretical analysis, and also show that the performance of CoopMACPri protocol varies with the number of nodes. We observed that the simulation results and analysis reflects the effectiveness of the proposed protocol as per the specifications.
Resumo:
An action is typically composed of different parts of the object moving in particular sequences. The presence of different motions (represented as a 1D histogram) has been used in the traditional bag-of-words (BoW) approach for recognizing actions. However the interactions among the motions also form a crucial part of an action. Different object-parts have varying degrees of interactions with the other parts during an action cycle. It is these interactions we want to quantify in order to bring in additional information about the actions. In this paper we propose a causality based approach for quantifying the interactions to aid action classification. Granger causality is used to compute the cause and effect relationships for pairs of motion trajectories of a video. A 2D histogram descriptor for the video is constructed using these pairwise measures. Our proposed method of obtaining pairwise measures for videos is also applicable for large datasets. We have conducted experiments on challenging action recognition databases such as HMDB51 and UCF50 and shown that our causality descriptor helps in encoding additional information regarding the actions and performs on par with the state-of-the art approaches. Due to the complementary nature, a further increase in performance can be observed by combining our approach with state-of-the-art approaches.