26 resultados para Treatment temperature

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The changes in the tensile properties and fracture mode brought about by heat treatment of Fe-12Cr-6Al ferritic stainless steel have been studied. A favourable combination of high strength and good ductility is obtained by heating the material at 1370 K for 2 h followed by a water quench. The high-temperature treatment results in carbide dissolution as well as an increase in the grain size. The mechanism of strengthening has been evaluated from the apparent activation energy (28 kJ mol–1) and is identified to be the unpinning of dislocations from the atmosphere of carbon atoms. As the heat-treatment temperature is increased, the fracture behaviour changes from ductile to brittle mode and this is related to the changes in grain size and friction stress.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The changes in the tensile properties and fracture mode brought about by heat treatment of Fe-12Cr-6Al ferritic stainless steel have been studied. A favourable combination of high strength and good ductility is obtained by heating the material at 1370 K for 2 h followed by a water quench. The high-temperature treatment results in carbide dissolution as well as an increase in the grain size. The mechanism of strengthening has been evaluated from the apparent activation energy (28 kJ mol–1) and is identified to be the unpinning of dislocations from the atmosphere of carbon atoms. As the heat-treatment temperature is increased, the fracture behaviour changes from ductile to brittle mode and this is related to the changes in grain size and friction stress.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, a detailed investigation on the effect of heat treatment on the microstructural characteristics, texture evolution and mechanical properties of Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite is presented. Optimised heat treatment parameters, namely, heat treatment temperature and heat treatment time, were first identified through grain size and microhardness measurements. Initially, heat treatment of composites was conducted at temperature range between 100 and 300 degrees C for 1 h. Based on optical microscopic analysis and microhardness measurements, it was evident that significant grain growth and reduction in microhardness occurred for temperatures > 200 degrees C. The cutoff temperature that caused significant grain growth/matrix softening was thus identified. Second, at constant temperature (200 degrees C), the effect of variation of heat treatment time was carried out (ranging between 1 and 5 h) so as to identify the range wherein increase in average grain size and reduction in microhardness occurred. Furthering the study, the effect of optimised heat treatment parameters (200 degrees C, 5 h) on the microstructural texture evolution and hence, on the tensile and compressive properties of the Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite was carried out. From electron backscattered diffraction (EBSD) analysis, it was identified that the optimised heat treatment resulted in recrystallisation and residual stress relaxation, as evident from the presence of similar to 87% strain free grains, when compared to that observed in the non-heat treated/as extruded condition (i.e. 2.2 times greater than in the as extruded condition). For the heat treated composite, under both tensile and compressive loads, a significant improvement in fracture strain values (similar to 60% increase) was observed when compared to that of the non-heat treated counterpart, with similar to 20% reduction in yield strength. Based on structure-property correlation, the change in mechanical characteristics is identified to be due to: (1) the presence of less stressed matrix/reinforcement interface due to the relief of residual stresses and (2) texture weakening due to matrix recrystallisation effects, both arising due to heat treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crystallization behaviors of the glass with a composition of 25Li(2)O.25B(2)O(3).50GeO(2) corresponding to lithium borogermanate LiBGeO4 have been examined. It has been confirmed that the LiBGeO4 crystalline phase is formed at the surface of heat-treated glasses. The second harmonic (SH) generation is found from transparent surface crystallized glasses, demonstrating for the first time that the LiBGeO4 phase shows optical nonlinearity. The SH intensity of LiBGeO4 crystallites (powdered state) prepared through crystallization is about ten times as large as that of pulverized alpha-quartz. The SH intensity of transparent crystallized glasses (bulk state) with crystalline layers of 3-4.5 mum thickness increases with increasing heat treatment temperature (540-560degreesC) and time (1-6 h), and the maximum SH intensity among the samples studied is in the order of 1/10 in comparison with that of alpha-quartz single crystal. The transparent crystallized glass obtained by heat treatment at 550alphaC for 3 h exhibits a clear and fine Maker fringe pattern, indicating a highly orientation of LiBGeO4 crystals at the surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silicon dioxide films are extensively used as protective, barrier and also low index films in multilayer optical devices. In this paper, the optical properties of electron beam evaporated SiO2 films, including absorption in the UV, visible and IR regions, are reported as a function of substrate temperature and post-deposition heat treatment. A comparative study of the optical properties of SiO2 films deposited in neutral and ionized oxygen is also made.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this present paper, the effects of non-isothermal rolling temperature and reduction in thickness followed by annealing on microstructure and mechanical properties of ZM21 magnesium alloy were investigated. The alloy rolled at four different temperatures 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C with reductions of 25%, 50% and 75%. Non-isothermal rolling resulted in grain refinement, introduction of shear bands and twins in the matrix alloy. Partial to full recrystallization was observed when the rolling temperature was above recrystallization temperature. Rolling and subsequent annealing resulted in strain-free equiaxed grains and complete disappearance of shear bands and twins. Maximum ultimate strength (345 MPa) with good ductility (14%) observed in the sample rolled at 250 degrees C with 75% reduction in thickness followed by short annealing. Recrystallization during warm/hot rolling was sluggish, but post-roll treatment gives distinct views about dynamic and static recrystallization. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

pplication of pulsed plasma for gas cleaning is gaining prominence in recent years mainly from the energy consideration point of view. Normally, gas treatment is carried out, at or above room temperature, by a conventional dry type corona reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report some interesting results of the treatment of such stable gases with pulsed plasma at very low ambient temperature. Also reported in the paper is an improvement in DeNO/DeNOx efficiency using unconventional wet-type reactors, designed and fabricated by the authors, operating at different ambient temperatures. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of a 8 kW diesel engine. Further, an attempt was made to test the feasibility of a helical wire as a corona electrode in place of the conventional straight wire electrode. A comparative analysis of the various tests is presented together with a note on the energy consideration

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Application of pulsed plasma for gas cleaning is gaining prominence in recent years mainly from the energy consideration point of view. Normally, gas treatment is carried out, at or above room temperature, by a conventional dry type corona reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report some interesting results of the treatment of such stable gases with pulsed plasma at very low ambient temperature. Also reported in the paper is an improvement in DeNO/DeNOx efficiency using unconventional wet-type reactors, designed and fabricated by the authors, operating at different ambient temperatures. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of a 8 kW diesel engine. Further, an attempt was made to test the feasibility of a helical wire as a corona electrode in place of the conventional straight wire electrode. A comparative analysis of the various tests is presented together with a note on the energy consideration

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work explores the potential of semi-solid heat treatment technique by elucidating its effect on the plastic behavior of 304L SS in hot working domain. To accomplish this objective, hot isothermal compression tests on 304L SS specimens with semi-solid heat treatment and conventional annealing heat treatment have been carried out within a temperature range of 1273-1473 K and strain rates ranging from 0.01 to 1 s(-1). The dynamic flow behavior of this steel in its conventional heat-treated condition and semi-solid heat-treated condition has been characterized in terms of strain hardening, temperature softening, strain rate hardening, and dynamic flow softening. Extensive microstructural investigation has been carried out to corroborate the results obtained from the analysis of flow behavior. Detailed analysis of the results demonstrates that semi-solid heat treatment moderates work hardening, strain rate hardening, and temperature sensitivity of 304L SS, which is favorable for hot deformation. The post-deformation hardness values of semi-solid heat-treated steel and conventionally heat-treated steel were found to remain similar despite the pre-deformation heat treatment conditions. The results obtained demonstrate the potential of semi-solid heat treatment as a pre-deformation heat treatment step to effectively reduce the strength of the material to facilitate easier deformation without affecting the post-deformation properties of the steel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this investigation was to understand the strength development of clays below fusion or vitrification temperatures of 900°C. The other objective was to establish threshold temperatures to produce a satisfactory construction material from clayey sediments from the Western Beaufort Sea for shore protection of artificial islands with minimum expense of thermal energy. Studies were, therefore, conducted using kaolinite, bentonite, and a clayey sediment from the Beaufort Sea. Unconfined-compressive-strength tests were conducted on clay samples heat treated from 110 to 700°C. Furthermore, to understand the factors responsible for strength-development-thermogravimetric studies and pore-size analysis, using mercury porosimetry, were also conducted. A gradual increase in strength was obtained with an increase in firing temperature. However, substantial and permanent increase in strength occurred only after dehydroxylation of all the clays studied; Clay samples heated to temperatures above dehydroxylation became resistant to disintegration upon immersion in water. Results indicate that the clayey sediments from Western Beaufort Sea have to be heat treated to about 600°C to produce granular material for use as a fill or shore-protection material for artificial islands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passivation of point and extended defects in GaSb has been observed as a result of hydrogenated amorphous silicon (a-Si:H) treatment by the glow discharge technique. Cathodoluminescence (CL) images recorded at various depths in the samples clearly show passivation of defects on the surface as well as in the bulk region. The passivation of various recombination centers in the bulk is attributed to the formation of hydrogen-impurity complexes by diffusion of hydrogen ions from the plasma a-Si:H acts as a protective cap layer and prevents surface degradation which is usually encountered by bare exposure to hydrogen plasma. An enhancement in luminescence intensity up to 20 times is seen due to the passivation of nonradiative recombination centers. The passivation efficiency is found to improve with an increase in a-Si:H deposition temperature. The relative passivation efficiency of donors and acceptors by hydrogen in undoped and Te-compensated p-GaSb has been evaluated by CL and by the temperature dependence of photoluminescence intensities. Most notably, effective passivation of minority dopants in tellurium compensated p-GaSb is evidenced for the first time. (C) 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ca-doped manganite La1-xCaxMnO3 samples with x=0.2 and 0.4 were investigated by extended x-ray absorption fine structure (EXAFS) as a function of temperature and preparation method. The samples exhibit characteristic resistivity change across the metal-insulator (MI) transition temperature whose shape and position depend on Ca-doping concentration and sample thermal treatment. EXAFS results evidenced an increase of nonthermal disorder at the MI transition temperature which is significantly correlated with the resistivity behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two drug-drug co-crystals of the anti-tuberculosis drugs isoniazid (INH), pyrazinamide (PYR) and 4-aminosalicylic acid (PAS) are reported. The first is the 1 : 1 molecular complex of INH and PAS. The second is the monohydrate of the 1 : 1 complex of PYR and PAS. The crystal structures of both co-crystals are characterized by a number of hydrogen bonded synthons. Hydrogen bonding of the COOH center dot center dot center dot N-pyridine type is found in both cases. In the INH : PAS co-crystal, there are two symmetry independent COOH center dot center dot center dot center dot N-pyridine hydrogen bonds. In one of these, the H-atom is located on the carboxylic group and is indicative of a co-crystal. In the second case, partial proton transfer occurs across the hydrogen bond, and the extent of proton transfer depends on the temperature. This is more indicative of a salt. Drug-drug co-crystals may have some bearing in the treatment of tuberculosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cascaded system of electrical discharges (non-thermal plasma) and adsorption process was investigated for the removal of oxides of Nitrogen (NOx) and total hydrocarbons (THC) from an actual diesel engine exhaust. The non-thermal plasma and adsorption processes were separately studied first and then the cascaded process was studied. In this study, different types of adsorbents were used. The NOx removal efficiency was higher with plasma-associated adsorption (cascaded) process compared to the individual processes and the removal efficiency was found almost invariant in time. When associated by plasma, among the adsorbents studied, activated charcoal and MS-13X were more effective for NOx and THC removal respectively. The experiments were conducted at no load and at 50% load conditions. The plasma reactor was kept at room temperature throughout the experiment, while the temperature of the adsorbent reactor was varied. A relative comparison of adsorbents was discussed at the end.