20 resultados para Time-memory attacks
em Indian Institute of Science - Bangalore - Índia
Resumo:
The fluctuation of the distance between a fluorescein-tyrosine pair within a single protein complex was directly monitored in real time by photoinduced electron transfer and found to be a stationary, time-reversible, and non-Markovian Gaussian process. Within the generalized Langevin equation formalism, we experimentally determine the memory kernel K(t), which is proportional to the autocorrelation function of the random fluctuating force. K(t) is a power-law decay, t(-0.51 +/- 0.07) in a broad range of time scales (10(-3)-10 s). Such a long-time memory effect could have implications for protein functions.
Resumo:
Security in a mobile communication environment is always a matter for concern, even after deploying many security techniques at device, network, and application levels. The end-to-end security for mobile applications can be made robust by developing dynamic schemes at application level which makes use of the existing security techniques varying in terms of space, time, and attacks complexities. In this paper we present a security techniques selection scheme for mobile transactions, called the Transactions-Based Security Scheme (TBSS). The TBSS uses intelligence to study, and analyzes the security implications of transactions under execution based on certain criterion such as user behaviors, transaction sensitivity levels, and credibility factors computed over the previous transactions by the users, network vulnerability, and device characteristics. The TBSS identifies a suitable level of security techniques from the repository, which consists of symmetric, and asymmetric types of security algorithms arranged in three complexity levels, covering various encryption/decryption techniques, digital signature schemes, andhashing techniques. From this identified level, one of the techniques is deployed randomly. The results shows that, there is a considerable reduction in security cost compared to static schemes, which employ pre-fixed security techniques to secure the transactions data.
Resumo:
We employ a fluctuation-based technique to investigate the athermal component associated with martensite phase transition, which is a prototype of temperature-driven structural transformation. Statistically, when the phase transition is purely athermal, we find that the temporal sequence of avalanches under constant drive is insensitive to the drive rate. We have used fluctuations in electrical resistivity or noise in nickel titanium shape memory alloys in three different forms: a thin film exhibiting well-defined transition temperatures,a highly disordered film, and a bulk wire of rectangular cross-section. Noise is studied in the realm of dynamic transition,viz.while the temperature is being ramped, which probes into the kinetics of the transformation at real time scales,and could probably stand out as a promising tool for material testing in various other systems, including nanoscale devices.
Resumo:
A linear time approximate maximum likelihood decoding algorithm on tail-biting trellises is presented, that requires exactly two rounds on the trellis. This is an adaptation of an algorithm proposed earlier with the advantage that it reduces the time complexity from O(m log m) to O(m) where m is the number of nodes in the tail-biting trellis. A necessary condition for the output of the algorithm to differ from the output of the ideal ML decoder is deduced and simulation results on an AWGN channel using tail-biting trellises for two rate 1/2 convolutional codes with memory 4 and 6 respectively, are reported.
Resumo:
Template matching is concerned with measuring the similarity between patterns of two objects. This paper proposes a memory-based reasoning approach for pattern recognition of binary images with a large template set. It seems that memory-based reasoning intrinsically requires a large database. Moreover, some binary image recognition problems inherently need large template sets, such as the recognition of Chinese characters which needs thousands of templates. The proposed algorithm is based on the Connection Machine, which is the most massively parallel machine to date, using a multiresolution method to search for the matching template. The approach uses the pyramid data structure for the multiresolution representation of templates and the input image pattern. For a given binary image it scans the template pyramid searching the match. A binary image of N × N pixels can be matched in O(log N) time complexity by our algorithm and is independent of the number of templates. Implementation of the proposed scheme is described in detail.
Resumo:
We have performed a series of magnetic aging experiments on single crystals of Dy0.5Sr0.5MnO3. The results demonstrate striking memory and chaos-like effects in this insulating half-doped perovskite manganite and suggest the existence of strong magnetic relaxation mechanisms of a clustered magnetic state. The spin-glass-like state established below a temperature T-sg approximate to 34 K originates from quenched disorder arising due to the ionic-radii mismatch at the rare earth site. However, deviations from the typical behavior seen in canonical spin glass materials are observed which indicate that the glassy magnetic properties are due to cooperative and frustrated dynamics in a heterogeneous or clustered magnetic state. In particular, the microscopic spin flip time obtained from dynamical scaling near the spin glass freezing temperature is four orders of magnitude larger than microscopic times found in atomic spin glasses. The magnetic viscosity deduced from the time dependence of the zero-field-cooled magnetization exhibits a peak at a temperature T < T-sg and displays a marked dependence on waiting time in zero field.
Resumo:
Random Access Scan, which addresses individual flip-flops in a design using a memory array like row and column decoder architecture, has recently attracted widespread attention, due to its potential for lower test application time, test data volume and test power dissipation when compared to traditional Serial Scan. This is because typically only a very limited number of random ``care'' bits in a test response need be modified to create the next test vector. Unlike traditional scan, most flip-flops need not be updated. Test application efficiency can be further improved by organizing the access by word instead of by bit. In this paper we present a new decoder structure that takes advantage of basis vectors and linear algebra to further significantly optimize test application in RAS by performing the write operations on multiple bits consecutively. Simulations performed on benchmark circuits show an average of 2-3 times speed up in test write time compared to conventional RAS.
Resumo:
Polycrystalline strontium titanate (SrTiO3) films were prepared by a pulsed laser deposition technique on p-type silicon and platinum-coated silicon substrates. The films exhibited good structural and dielectric properties which were sensitive to the processing conditions. The small signal dielectric constant and dissipation factor at a frequency of 100 kHz were about 225 and 0.03 respectively. The capacitance-voltage (C-V) characteristics in metal-insulator-semiconductor structures exhibited anomalous frequency dispersion behavior and a hysteresis effect. The hysteresis in the C-V curve was found to be about 1 V and of a charge injection type. The density of interface states was about 1.79 x 10(12) cm(-2). The charge storage density was found to be 40 fC mu m(-2) at an applied electric field of 200 kV cm(-1). Studies on current-voltage characteristics indicated an ohmic nature at lower voltages and space charge conduction at higher voltages. The films also exhibited excellent time-dependent dielectric breakdown behavior.
Resumo:
Sensor network nodes exhibit characteristics of both embedded systems and general-purpose systems.A sensor network operating system is a kind of embedded operating system, but unlike a typical embedded operating system, sensor network operatin g system may not be real time, and is constrained by memory and energy constraints. Most sensor network operating systems are based on event-driven approach. Event-driven approach is efficient in terms of time and space.Also this approach does not require a separate stack for each execution context. But using this model, it is difficult to implement long running tasks, like cryptographic operations. A thread based computation requires a separate stack for each execution context, and is less efficient in terms of time and space. In this paper, we propose a thread based execution model that uses only a fixed number of stacks. In this execution model, the number of stacks at each priority level are fixed. It minimizes the stack requirement for multi-threading environment and at the same time provides ease of programming. We give an implementation of this model in Contiki OS by separating thread implementation from protothread implementation completely. We have tested our OS by implementing a clock synchronization protocol using it.
Resumo:
Today's feature-rich multimedia products require embedded system solution with complex System-on-Chip (SoC) to meet market expectations of high performance at a low cost and lower energy consumption. The memory architecture of the embedded system strongly influences critical system design objectives like area, power and performance. Hence the embedded system designer performs a complete memory architecture exploration to custom design a memory architecture for a given set of applications. Further, the designer would be interested in multiple optimal design points to address various market segments. However, tight time-to-market constraints enforces short design cycle time. In this paper we address the multi-level multi-objective memory architecture exploration problem through a combination of exhaustive-search based memory exploration at the outer level and a two step based integrated data layout for SPRAM-Cache based architectures at the inner level. We present a two step integrated approach for data layout for SPRAM-Cache based hybrid architectures with the first step as data-partitioning that partitions data between SPRAM and Cache, and the second step is the cache conscious data layout. We formulate the cache-conscious data layout as a graph partitioning problem and show that our approach gives up to 34% improvement over an existing approach and also optimizes the off-chip memory address space. We experimented our approach with 3 embedded multimedia applications and our approach explores several hundred memory configurations for each application, yielding several optimal design points in a few hours of computation on a standard desktop.
Resumo:
Over past few years, the studies of cultured neuronal networks have opened up avenues for understanding the ion channels, receptor molecules, and synaptic plasticity that may form the basis of learning and memory. The hippocampal neurons from rats are dissociated and cultured on a surface containing a grid of 64 electrodes. The signals from these 64 electrodes are acquired using a fast data acquisition system MED64 (Alpha MED Sciences, Japan) at a sampling rate of 20 K samples with a precision of 16-bits per sample. A few minutes of acquired data runs in to a few hundreds of Mega Bytes. The data processing for the neural analysis is highly compute-intensive because the volume of data is huge. The major processing requirements are noise removal, pattern recovery, pattern matching, clustering and so on. In order to interface a neuronal colony to a physical world, these computations need to be performed in real-time. A single processor such as a desk top computer may not be adequate to meet this computational requirements. Parallel computing is a method used to satisfy the real-time computational requirements of a neuronal system that interacts with an external world while increasing the flexibility and scalability of the application. In this work, we developed a parallel neuronal system using a multi-node Digital Signal processing system. With 8 processors, the system is able to compute and map incoming signals segmented over a period of 200 ms in to an action in a trained cluster system in real time.
Resumo:
Today's feature-rich multimedia products require embedded system solution with complex System-on-Chip (SoC) to meet market expectations of high performance at a low cost and lower energy consumption. The memory architecture of the embedded system strongly influences these parameters. Hence the embedded system designer performs a complete memory architecture exploration. This problem is a multi-objective optimization problem and can be tackled as a two-level optimization problem. The outer level explores various memory architecture while the inner level explores placement of data sections (data layout problem) to minimize memory stalls. Further, the designer would be interested in multiple optimal design points to address various market segments. However, tight time-to-market constraints enforces short design cycle time. In this paper we address the multi-level multi-objective memory architecture exploration problem through a combination of Multi-objective Genetic Algorithm (Memory Architecture exploration) and an efficient heuristic data placement algorithm. At the outer level the memory architecture exploration is done by picking memory modules directly from a ASIC memory Library. This helps in performing the memory architecture exploration in a integrated framework, where the memory allocation, memory exploration and data layout works in a tightly coupled way to yield optimal design points with respect to area, power and performance. We experimented our approach for 3 embedded applications and our approach explores several thousand memory architecture for each application, yielding a few hundred optimal design points in a few hours of computation time on a standard desktop.
Resumo:
We address the problem of recognition and retrieval of relatively weak industrial signal such as Partial Discharges (PD) buried in excessive noise. The major bottleneck being the recognition and suppression of stochastic pulsive interference (PI) which has similar time-frequency characteristics as PD pulse. Therefore conventional frequency based DSP techniques are not useful in retrieving PD pulses. We employ statistical signal modeling based on combination of long-memory process and probabilistic principal component analysis (PPCA). An parametric analysis of the signal is exercised for extracting the features of desired pules. We incorporate a wavelet based bootstrap method for obtaining the noise training vectors from observed data. The procedure adopted in this work is completely different from the research work reported in the literature, which is generally based on deserved signal frequency and noise frequency.
Resumo:
We study the distribution of first passage time for Levy type anomalous diffusion. A fractional Fokker-Planck equation framework is introduced.For the zero drift case, using fractional calculus an explicit analytic solution for the first passage time density function in terms of Fox or H-functions is given. The asymptotic behaviour of the density function is discussed. For the nonzero drift case, we obtain an expression for the Laplace transform of the first passage time density function, from which the mean first passage time and variance are derived.
Resumo:
SrRuO3 is widely known to be an itinerant ferromagnet with a T-C similar to 160 K. It is well known that glassy materials exhibit time dependent phenomena such as memory effect due to their generic slow dynamics. However, for the first time, we have observed memory effect in SrRu(1-x)O3 (0.01