265 resultados para Tau Theory
em Indian Institute of Science - Bangalore - Índia
Resumo:
We revisit the extraction of alpha(s)(M-tau(2)) from the QCD perturbative corrections to the hadronic tau branching ratio, using an improved fixed-order perturbation theory based on the explicit summation of all renormalization-group accessible logarithms, proposed some time ago in the literature. In this approach, the powers of the coupling in the expansion of the QCD Adler function are multiplied by a set of functions D-n, which depend themselves on the coupling and can be written in a closed form by iteratively solving a sequence of differential equations. We find that the new expansion has an improved behavior in the complex energy plane compared to that of the standard fixed-order perturbation theory (FOPT), and is similar but not identical to the contour-improved perturbation theory (CIPT). With five terms in the perturbative expansion we obtain in the (MS) over bar scheme alpha(s)(M-tau(2)) = 0.338 +/- 0.010, using as input a precise value for the perturbative contribution to the hadronic width of the tau lepton reported recently in the literature.
Resumo:
Be the strong coupling constant alpha(s) from the tau hadronn width using a renormalization group summed (RGS) expansion of the QCD Adler lunction. The main theoretical uncertainty in the extraction of as is due to the manner in which renormalization group invariance is implemented, and the as yet uncalculated higher order terms in the QCD perturbative series. We show that new expansion exhibits good renormalization group improvement and the behavior of the series is similar to that of the standard RGS expansion. The value of the strong coupling in (MS) over bar scheme obtained with the RCS expansion is alpha(s) (M-tau(2)) = 0.338 +/- 0.010. The convergence properties of the new expansion can be improved by Bond transformation and analytic continuation in t he Bond plane. This is discussed elsewhere in these issues.
Resumo:
The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling alpha(s) and other QCD parameters from the hadronic decays of the tau lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher-order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ``reference model,'' including moments that are poorly described by the standard expansions. The results provide additional support for the plausibility of the description of the Adler function in terms of a small number of dominant renormalons.
Resumo:
Ampcalculator (AMPC) is a Mathematica (c) based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O(p(4))) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G(27). Another illustrative set of amplitudes at tree level we provide is in the context of tau-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics.
Resumo:
In this paper, we approach the classical problem of clustering using solution concepts from cooperative game theory such as Nucleolus and Shapley value. We formulate the problem of clustering as a characteristic form game and develop a novel algorithm DRAC (Density-Restricted Agglomerative Clustering) for clustering. With extensive experimentation on standard data sets, we compare the performance of DRAC with that of well known algorithms. We show an interesting result that four prominent solution concepts, Nucleolus, Shapley value, Gately point and \tau-value coincide for the defined characteristic form game. This vindicates the choice of the characteristic function of the clustering game and also provides strong intuitive foundation for our approach.
Resumo:
A novel analysis to compute the admittance characteristics of the slots cut in the narrow wall of a rectangular waveguide, which includes the corner diffraction effects and the finite waveguide wall thickness, is presented. A coupled magnetic field integral equation is formulated at the slot aperture which is solved by the Galerkin approach of the method of moments using entire domain sinusoidal basis functions. The externally scattered fields are computed using the finite difference method (FDM) coupled with the measured equation of invariance (MEI). The guide wall thickness forms a closed cavity and the fields inside it are evaluated using the standard FDM. The fields scattered inside the waveguide are formulated in the spectral domain for faster convergence compared to the traditional spatial domain expansions. The computed results have been compared with the experimental results and also with the measured data published in previous literature. Good agreement between the theoretical and experimental results is obtained to demonstrate the validity of the present analysis.
Resumo:
In this paper, we study the Einstein relation for the diffusivity to mobility ratio (DMR) in n-channel inversion layers of non-linear optical materials on the basis of a newly formulated electron dispersion relation by considering their special properties within the frame work of k.p formalism. The results for the n-channel inversion layers of III-V, ternary and quaternary materials form a special case of our generalized analysis. The DMR for n-channel inversion layers of II-VI, IV-VI and stressed materials has been investigated by formulating the respective 2D electron dispersion laws. It has been found, taking n-channel inversion layers of CdGeAs2, Cd(3)AS(2), InAs, InSb, Hg1-xCdxTe, In1-xGaxAsyP1-y lattice matched to InP, CdS, PbTe, PbSnTe, Pb1-xSnxSe and stressed InSb as examples, that the DMR increases with the increasing surface electric field with different numerical values and the nature of the variations are totally band structure dependent. The well-known expression of the DMR for wide gap materials has been obtained as a special case under certain limiting conditions and this compatibility is an indirect test for our generalized formalism. Besides, an experimental method of determining the 2D DMR for n-channel inversion layers having arbitrary dispersion laws has been suggested.
Resumo:
An understanding of the effect of specific solute-solvent interactions on the diffusion of a solute probe is a long standing problem of physical chemistry. In this paper a microscopic treatment of this effect is presented. The theory takes into account the modification of the solvent structure around the solute due to this specific interaction between them. It is found that for strong, attractive interaction, there is an enhanced coupling between the solute and the solvent dynamic modes (in particular, the density mode), which leads to a significant increase in the friction on the solute. The diffusion coefficient of the solute is found to depend strongly and nonlinearly on the magnitude of the attractive interaction. An interesting observation is that specific solute-solvent interaction can induce a crossover from a sliplike to a sticklike diffusion. In the limit of strong attractive interaction, we recover a dynamic version of the solvent-berg picture. On the other hand, for repulsive interaction, the diffusion coefficient of the solute increases. These results are in qualitative agreement with recent experimental observations.
Resumo:
We study the generation of defects when a quantum spin system is quenched through a multicritical point by changing a parameter of the Hamiltonian as t/tau, where tau is the characteristic timescale of quenching. We argue that when a quantum system is quenched across a multicritical point, the density of defects (n) in the final state is not necessarily given by the Kibble-Zurek scaling form n similar to 1/tau(d nu)/((z nu+1)), where d is the spatial dimension, and. and z are respectively the correlation length and dynamical exponent associated with the quantum critical point. We propose a generalized scaling form of the defect density given by n similar to 1/(tau d/(2z2)), where the exponent z(2) determines the behavior of the off-diagonal term of the 2 x 2 Landau-Zener matrix at the multicritical point. This scaling is valid not only at a multicritical point but also at an ordinary critical point.
Resumo:
This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general two-, three-systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. We also present novel methods for the determination of the principal screws for four-, five-systems which do not require the explicit computation of the reciprocal systems. Principal screws of the systems of different orders are identified from one uniform criterion, namely that the pitches of the principal screws are the extreme values of the pitch.The classical results of screw theory, namely the equations for the cylindroid and the pitch-hyperboloid associated with the two-and three-systems, respectively have been derived within the proposed framework. Algebraic conditions have been derived for some of the special screw systems. The formulation is also illustrated with several examples including two spatial manipulators of serial and parallel architecture, respectively.
Resumo:
An alternative derivation of the dispersion relation for the transverse vibration of a circular cylindrical shell is presented. The use of the shallow shell theory model leads to a simpler derivation of the same result. Further, the applicability of the dispersion relation is extended to the axisymmetric mode and the high frequency beam mode.
Resumo:
KIRCHHOFF’S theory [1] and the first-order shear deformation theory (FSDT) [2] of plates in bending are simple theories and continuously used to obtain design information. Within the classical small deformation theory of elasticity, the problem consists of determining three displacements, u, v, and w, that satisfy three equilibrium equations in the interior of the plate and three specified surface conditions. FSDT is a sixth-order theory with a provision to satisfy three edge conditions and maintains, unlike in Kirchhoff’s theory, independent linear thicknesswise distribution of tangential displacement even if the lateral deflection, w, is zero along a supported edge. However, each of the in-plane distributions of the transverse shear stresses that are of a lower order is expressed as a sum of higher-order displacement terms. Kirchhoff’s assumption of zero transverse shear strains is, however, not a limitation of the theory as a first approximation to the exact 3-D solution.
Resumo:
Computation of the dependency basis is the fundamental step in solving the membership problem for functional dependencies (FDs) and multivalued dependencies (MVDs) in relational database theory. We examine this problem from an algebraic perspective. We introduce the notion of the inference basis of a set M of MVDs and show that it contains the maximum information about the logical consequences of M. We propose the notion of a dependency-lattice and develop an algebraic characterization of inference basis using simple notions from lattice theory. We also establish several interesting properties of dependency-lattices related to the implication problem. Founded on our characterization, we synthesize efficient algorithms for (a): computing the inference basis of a given set M of MVDs; (b): computing the dependency basis of a given attribute set w.r.t. M; and (c): solving the membership problem for MVDs. We also show that our results naturally extend to incorporate FDs also in a way that enables the solution of the membership problem for both FDs and MVDs put together. We finally show that our algorithms are more efficient than existing ones, when used to solve what we term the ‘generalized membership problem’.
Resumo:
A novel method is proposed to treat the problem of the random resistance of a strictly one-dimensional conductor with static disorder. It is suggested, for the probability distribution of the transfer matrix of the conductor, the distribution of maximum information-entropy, constrained by the following physical requirements: 1) flux conservation, 2) time-reversal invariance and 3) scaling, with the length of the conductor, of the two lowest cumulants of ζ, where = sh2ζ. The preliminary results discussed in the text are in qualitative agreement with those obtained by sophisticated microscopic theories.
Resumo:
Timoshenko's shear deformation theory is widely used for the dynamical analysis of shear-flexible beams. This paper presents a comparative study of the shear deformation theory with a higher order model, of which Timoshenko's shear deformation model is a special case. Results indicate that while Timoshenko's shear deformation theory gives reasonably accurate information regarding the set of bending natural frequencies, there are considerable discrepancies in the information it gives regarding the mode shapes and dynamic response, and so there is a need to consider higher order models for the dynamical analysis of flexure of beams.