110 resultados para Stretching modes
em Indian Institute of Science - Bangalore - Índia
Resumo:
Infrared spectra of atmospherically important dimethylquinolines (DMQs), namely 2,4-DMQ, 2,6-DMQ, 2,7-DMQ, and 2,8-DMQ in the gas phase at 80 degrees C were recorded using a long variable path-length cell. DFT calculations were carried out to assign the bands in the experimentally observed spectra at the B3LYP/6-31G* level of theory. The spectral assignments particularly for the C-H stretching modes could not be made unambiguously using calculated anharmonic or scaled harmonic frequencies. To resolve this problem, a scaled force field method of assignment was used. Assignment of fundamental modes was confirmed by potential energy distributions (PEDs) of the normal modes derived by the scaled force fields using a modified version of the UMAT program in the QCPE package. We demonstrate that for large molecules such as the DMQs, the scaling of the force field is more effective in arriving at the correct assignment of the fundamentals for a quantitative vibrational analysis. An error analysis of the mean deviation of the calculated harmonic, anharmonic, and force field fitted frequencies from the observed frequency provides strong evidence for the correctness of the assignment.
Resumo:
Anomalous changes in the infrared intensity of the cobalt-oxygen stretching modes in the infrared spectrum of lanthanum cobaltate (LaCoO3) suggest vibronic coupling. This phenomenon has been studied by infrared vibrational spectroscopy both by temperature-induced changes of spin-state occupation and pressure-induced changes of the crystal field splitting 10Dq.
Resumo:
Layered organic inorganic hybrids based on perovskite-derived alkylammonium lead halides have been demonstrated as important new materials in the construction of molecular electronic devices. Typical of this class of materials are the single-perovskite slab lead iodides of the general formula (CnH2n+1NH3)(2)PbI4. While for small n, these compounds are amenable to single-crystal structure determination, the increasing degree of disorder in the long chain (n = 12,14...) compounds makes such an analysis difficult. In this study, we use powder X-ray diffraction, and vibrational and C-13 NMR spectroscopies to establish the conformation, orientation and organization of hydrocarbon chains in the series of layered alkylammonium lead iodides (CnH2n+1NH3)(2)PbI4 (n = 12,16,18). We find that the alkyl chains adopt a tilted bilayer arrangement, while the structure of the inorganic layer remains invariant with respect to the value of n. Conformation-sensitive methylene stretching modes in the infrared and Raman spectra, as well as the C-13 NMR spectra indicate that bonds in the methylene chain are in trans configuration. The skeletal modes of the alkyl chain in the Raman spectra establish that there is a high degree of all-trans conformational registry for the values of n studied here. From the orientation dependence of the infrared spectra of crystals of (CnH2n+1NH3)(2)PbI4 ( n = 12,16), we find that the molecular axis of the all-trans alkyl chains are tilted away from the interlayer normal by an angle of 55degrees. This value of this tilt angle is consistent with the dependence of the c lattice expansion as a function of n, as determined from powder X-ray diffraction.
Resumo:
In this manuscript, rotational spectra of four new isotopologues of the S-H center dot center dot center dot pi bonded C2H4 center dot center dot center dot H2S complex, i.e., C2D4 center dot center dot center dot H2S, C2D4 center dot center dot center dot D2S, C2D4 center dot center dot center dot HDS, and (CCH4)-C-13 center dot center dot center dot H2S have been reported and analyzed. All isotopologues except C2D4 center dot center dot center dot HDS show a four line pattern whereas a doubling of the transition frequencies was observed for C2D4 center dot center dot center dot HDS. These results together with our previous report on the title complex M. Goswami, P. K. Mandal, D. J. Ramdass, and E. Arunan, Chem. Phys. Lett. 393(1-3), 22-27 (2004)] confirm that both subunits (C2H4 and H2S) are involved in large amplitude motions leading to a splitting of each rotational transition to a quartet. Further, the results also confirm that the motions which are responsible for the observed splittings involve both monomers. Molecular symmetry group analysis, considering the interchange of equivalent H atoms in H2S and C2H4 could explain the observed four line pattern and their intensities in the microwave spectrum. In addition, hydride stretching fundamentals of the complex were measured using coherence-converted population transfer Fourier Transform Microwave-infrared (IR-MW double resonance) experiments in the S-H and C-H stretch regions. Changes in the tunneling splittings upon vibrational excitation are consistent with the isotopic dependence of pure rotational transitions. A complexation shift of 2.7-6.5 cm(-1) has been observed in the two fundamental S-H stretching modes of the H2S monomer in the complex. Vibrational pre-dissociation in the bound S-H stretch has been detected whereas the instrument-limited line-shapes in other S-H and C-H stretches indicate slower pre-dissociation rate. Some local perturbations in the vibrational spectra have been observed. Two combination bands have been observed corresponding to both the S-H stretching fundamentals and what appears to be the intermolecular stretching mode at 55 cm(-1). The tunneling splitting involved in the rotation of C2H4 unit has been deduced to be 1.5 GHz from the IR-MW results. In addition, ab initio barrier heights derived for different motions of the monomers support the experimental results and provide further insight into the motions causing the splitting. (C) 2013 AIP Publishing LLC.
Resumo:
Hydrogen bonded complexes formed between the square pyramidal Fe(CO)(5) with HX (X = F, Cl, Br), showing X-H center dot center dot center dot Fe interactions, have been investigated theoretically using density functional theory (DFT) including dispersion correction. Geometry, interaction energy, and large red shift of about 400 cm(-1) in the FIX stretching frequency confirm X-H center dot center dot center dot Fe hydrogen bond formation. In the (CO)(5)Fe center dot center dot center dot HBr complex, following the significant red shift, the HBr stretching mode is coupled with the carbonyl stretching modes. This clearly affects the correlation between frequency shift and binding energy, which is a hallmark of hydrogen bonds. Atoms in Molecule (AIM) theoretical analyses show the presence of a bond critical point between the iron and the hydrogen of FIX and significant mutual penetration. These X-H center dot center dot center dot Fe hydrogen bonds follow most but not all of the eight criteria proposed by Koch and Popelier (J. Phys. Chem. 1995, 99, 9747) based on their investigations on C-H center dot center dot center dot O hydrogen bonds. Natural bond orbital (NBO) analysis indicates charge transfer from the organometallic system to the hydrogen bond donor. However, there is no correlation between the extent of charge transfer and interaction,energy, contrary to what is proposed in the recent IUPAC recommendation (Pure Appl.. Chem. 2011, 83, 1637). The ``hydrogen bond radius'' for iron has been determined to be 1.60 +/- 0.02 angstrom, and not surprisingly it is between the covalent (127 angstrom) and van der Waals (2.0) radii of Fe. DFT and AIM theoretical studies reveal that Fe in square pyramidal Fe(CO)(5) can also form halogen bond with CIF and ClH as ``halogen bond donor''. Both these complexes show mutual penetration as well, though the Fe center dot center dot center dot Cl distance is closer to the sum of van der Waals radii of Fe and Cl in (CO)5Fe center dot center dot center dot ClH, and it is about 1 angstrom less in (CO)(5)Fe center dot center dot center dot ClF.
Resumo:
The β-phase of polyvinylidene fluoride (PVDF) is well known for its piezoelectric properties. PVDF films have been developed using solvent cast method. The films thus produced are in α-phase. The α-phase is transformed to piezoelectric β-phase when the film is hot-stretched with various different stretching factors at various different temperatures. The films are then characterized in terms of their mechanical properties and surface morphological changes during the transformation from α- to β-phases by using X-ray diffraction, differential scanning calorimeter, Raman spectra, Infrared spectra, tensile testing, and scanning electron microscopy. The films showed increased crystallinity with stretching at temperature up to 80°C. The optimum conditions to achieve β-phase have been discussed in detail. The fabricated PVDF sensors have been tested for free vibration and impact on plate structure, and its response is compared with conventional piezoelectric wafer type sensor. The resonant and antiresonant peaks in the frequency response of PVDF sensor match well with that of lead zirconate titanate wafer sensors. Effective piezoelectric properties and the variations in the frequency response spectra due to free vibration and impact loading conditions are reported. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers.
Resumo:
We have studied two person stochastic differential games with multiple modes. For the zero-sum game we have established the existence of optimal strategies for both players. For the nonzero-sum case we have proved the existence of a Nash equilibrium.
Resumo:
The characterisation of cracks is usually done using the well known three basic fracture modes, namely opening, shearing and tearing modes. In isotropic materials these modes are uncoupled and provide a convenient way to define the fracture parameters. It is well known that these fracture modes are coupled in anisotropic materials. In the case of orthotropic materials also, coupling exists between the fracture modes, unless the crack plane coincides with one of the axes of orthotropy. The strength of coupling depends upon the orientation of the axes of orthotropy with respect to the crack plane and so the energy release rate components associated with each of the modes vary with crack orientation. The variation, of these energy release rate components with the crack orientation with respect to orthotropic axes, is analyzed in this paper. Results indicate that in addition to the orthotropic planes there exists other planes with reference to which fracture modes are uncoupled.
Resumo:
The effect of the magnetic field on the unsteady flow over a stretching surface in a rotating fluid has been studied. The unsteadiness in the flow field is due to the time-dependent variation of the velocity of the stretching surface and the angular velocity of the rotating fluid. The Navier-Stokes equations and the energy equation governing the flow and the heat transfer admit a self-similar solution if the velocity of the stretching surface and the angular velocity of the rotating fluid vary inversely as a linear function of time. The resulting system of ordinary differential equations is solved numerically using a shooting method. The rotation parameter causes flow reversal in the component of the velocity parallel to the strerching surface and the magnetic field tends to prevent or delay the flow reversal. The surface shear stresses dong the stretching surface and in the rotating direction increase with the rotation parameter, but the surface heat transfer decreases. On the other hand, the magnetic field increases the surface shear stress along the stretching surface, but reduces the surface shear stress in the rotating direction and the surface heat transfer. The effect of the unsteady parameter is more pronounced on the velocity profiles in the rotating direction and temperature profiles.
Resumo:
The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.
Resumo:
The flow and heat transfer problem in the boundary layer induced by a continuous moving surface is important in many manufacturing processes in industry such as the boundary layer along material handling conveyers, the aerodynamic extrusion of plastic sheet, the cooling of an infinite metalic plate in a cooling bath (which may also be electrolyte). Glass blowing, continuous casting and spinning of fibres also involve the flow due to a stretching surface. Sakiadis [1] was the first to study the flow induced by a semi-infinite moving wall in an ambient fluid. On the other hand, Crane [2] first studied the flow over a linearly stretching sheet in an ambient fluid. Subsequently, Crane [3] also investigated the corresponding heat transfer problem. Since then several authors [4-8] have studied various aspects of this problem such as the effects of mass transfer, variable wall temperature, constant heat flux, magnetic field etc. Recently, Andersson [9] has obtained an exact solution of the Navier-Stokes equations for the MHD flow over a linearly stretching sheet in an ambient fluid. Also Chiam [10] has studied the heat transfer with variable thermal conductivity on a stretching sheet when the velocities of the sheet and the free stream are equal.
Resumo:
Non-Abelian quantum Hall states are characterized by the simultaneous appearance of charge and neutral gapless edge modes, with the structure of the latter being intricately related to the existence of bulk quasiparticle excitations obeying non-Abelian statistics. Here we propose a scenario for detecting the neutral modes by having two point contacts in series separated by a distance set by the thermal equilibration length of the charge mode. We show that by using the first point contact as a heating device, the excess charge noise measured at the second point contact carries a nontrivial signature of the presence of the neutral mode. We also obtain explicit expressions for the thermal conductance and corresponding Lorentz number for transport across a quantum point contact between two edges held at different temperatures and chemical potentials.
Resumo:
The probable modes of binding for methyl-α-d-sophoroside, methyl-β-d-sophoroside, laminariboise and cellobiose to concanavalin A have been determined using theoretical methods. Methyl-d-sophorosides can bind to concanavalin A in two modes, i.e. by placing their reducing as well as non-reducing sugar units in the carbohydrate specific binding site, whereas laminaribiose and cellobiose can reach the binding site only with their non-reducing glucose units. However, the probability for methyl-α-d-sophoroside to bind to concanavalin A with its reducing sugar residue as the occupant of the binding site is much higher than it is with its non-reducing sugar residue as the occupant of the sugar binding site. A few of the probable conformers of methyl-β-d-sophoroside can bind to concanavalin A with either the reducing or non-reducing glucose unit. Higher energy conformers of cellobiose or laminaribiose can reach the binding site with their non-reducing residues alone. The relative differences in the binding affinities of these disaccharides are mainly due to the differences in the availability of proper conformers which can reach the binding site and to non-covalent interactions between the sugar and the protein. This study also suggests that though the sugar binding site of concanavalin A accommodates a single sugar residue, the residue outwards from the binding site also interacts with concanavalin A, indicating the existence of extended concanavalin A carbohydrate interactions.