18 resultados para Strategic platform design

em Indian Institute of Science - Bangalore - Índia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Environmental inputs can improve the level of innovation by interconnecting them with traditional inputs regarding the properties of materials and processes as a strategic eco-design procedure. Advanced engineered polymer composites are needed to meet the diverse needs of users for high-performance automotive, construction and commodity products that simultaneously maximize the sustainability of forest resources. In the current work, wood polymer composites (WPC) are studied to promote long-term resource sustainability and to decrease environmental impacts relative to those of existing products. A series of polypropylene wood–fiber composite materials having 20, 30, 40 and 50 wt. % of wood–fibers were prepared using twin-screw extruder and injection molding machine. Tensile and flexural properties of the composites were determined. Polypropylene (PP) as a matrix used in this study is a thermoplastic material, which is recyclable. Suitability of the prepared composites as a sustainable product is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The memory subsystem is a major contributor to the performance, power, and area of complex SoCs used in feature rich multimedia products. Hence, memory architecture of the embedded DSP is complex and usually custom designed with multiple banks of single-ported or dual ported on-chip scratch pad memory and multiple banks of off-chip memory. Building software for such large complex memories with many of the software components as individually optimized software IPs is a big challenge. In order to obtain good performance and a reduction in memory stalls, the data buffers of the application need to be placed carefully in different types of memory. In this paper we present a unified framework (MODLEX) that combines different data layout optimizations to address the complex DSP memory architectures. Our method models the data layout problem as multi-objective genetic algorithm (GA) with performance and power being the objectives and presents a set of solution points which is attractive from a platform design viewpoint. While most of the work in the literature assumes that performance and power are non-conflicting objectives, our work demonstrates that there is significant trade-off (up to 70%) that is possible between power and performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the most important factors that affect the pointing of precision payloads and devices in space platforms is the vibration generated due to static and dynamic unbalanced forces of rotary equipments placed in the neighborhood of payload. Generally, such disturbances are of low amplitude, less than 1 kHz, and are termed as ‘micro-vibrations’. Due to low damping in the space structure, these vibrations have long decay time and they degrade the performance of payload. This paper addresses the design, modeling and analysis of a low frequency space frame platform for passive and active attenuation of micro-vibrations. This flexible platform has been designed to act as a mount for devices like reaction wheels, and consists of four folded continuous beams arranged in three dimensions. Frequency and response analysis have been carried out by varying the number of folds, and thickness of vertical beam. Results show that lower frequencies can be achieved by increasing the number of folds and by decreasing the thickness of the blade. In addition, active vibration control is studied by incorporating piezoelectric actuators and sensors in the dynamic model. It is shown using simulation that a control strategy using optimal control is effective for vibration suppression under a wide variety of loading conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the world of high performance computing huge efforts have been put to accelerate Numerical Linear Algebra (NLA) kernels like QR Decomposition (QRD) with the added advantage of reconfigurability and scalability. While popular custom hardware solution in form of systolic arrays can deliver high performance, they are not scalable, and hence not commercially viable. In this paper, we show how systolic solutions of QRD can be realized efficiently on REDEFINE, a scalable runtime reconfigurable hardware platform. We propose various enhancements to REDEFINE to meet the custom need of accelerating NLA kernels. We further do the design space exploration of the proposed solution for any arbitrary application of size n × n. We determine the right size of the sub-array in accordance with the optimal pipeline depth of the core execution units and the number of such units to be used per sub-array.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The assignment of tasks to multiple resources becomes an interesting game theoretic problem, when both the task owner and the resources are strategic. In the classical, nonstrategic setting, where the states of the tasks and resources are observable by the controller, this problem is that of finding an optimal policy for a Markov decision process (MDP). When the states are held by strategic agents, the problem of an efficient task allocation extends beyond that of solving an MDP and becomes that of designing a mechanism. Motivated by this fact, we propose a general mechanism which decides on an allocation rule for the tasks and resources and a payment rule to incentivize agents' participation and truthful reports. In contrast to related dynamic strategic control problems studied in recent literature, the problem studied here has interdependent values: the benefit of an allocation to the task owner is not simply a function of the characteristics of the task itself and the allocation, but also of the state of the resources. We introduce a dynamic extension of Mezzetti's two phase mechanism for interdependent valuations. In this changed setting, the proposed dynamic mechanism is efficient, within period ex-post incentive compatible, and within period ex-post individually rational.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the problem of Probably Ap-proximate Correct (PAC) learning of a bi-nary classifier from noisy labeled exam-ples acquired from multiple annotators(each characterized by a respective clas-sification noise rate). First, we consider the complete information scenario, where the learner knows the noise rates of all the annotators. For this scenario, we derive sample complexity bound for the Mini-mum Disagreement Algorithm (MDA) on the number of labeled examples to be ob-tained from each annotator. Next, we consider the incomplete information sce-nario, where each annotator is strategic and holds the respective noise rate as a private information. For this scenario, we design a cost optimal procurement auc-tion mechanism along the lines of Myer-son’s optimal auction design framework in a non-trivial manner. This mechanism satisfies incentive compatibility property,thereby facilitating the learner to elicit true noise rates of all the annotators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: A number of proteome studies have been performed recently to identify pheromone-related protein expression and their molecular function using genetically modified rodents' urine. However, no such studies have used Indian commensal rodents; interestingly, in a previous investigation, we confirmed the presence of volatile molecules in commensal rodents urine and these molecules seem to be actively involved in pheromonal communication. Therefore, the present study aims to identify the major urinary protein [MUP] present in commensal rat urine, which will help us to understand the protein's expression pattern and intrinsic properties among the rodents globally. Experimental Design: Initially, the total urinary proteins were separated by 1-D and 2-D electrophoresis and then subsequently analyzed by Matrix Assisted Laser Desorption Ionization-Time of Flight and Mass Spectrometer (MALDI-TOF/MS). Furthermore, they were then fragmented with the aid of a Tandem Mass Spectrometer (TOF/TOF) and the identified sequences aligned and confirmed using similarity with the deduced primary structures of members of the lipocalin superfamily.Results: The SDS-PAGE protein profiles showed distinct proteins with molecular masses of 15, 22.4, 25, 28, 42, 50, 55, 68, and 91 kDa. Of these proteins, the 22.4 kDa protein was considered to be target candidate. When 2D electrophoresis was carried out, about similar to 50 spots were detected with different masses and various pI ranges. The 22.4 kDa protein was found to have a pI of about 4.9. This 22.4 kDa protein spot was digested and subjected to mass spectrometry; it was identified as rat MUP. The fragmented peptides from the rat MUP at 935, 1026, 1192, and 1303 m/z were further fragmented with the aid of MS/MS and generated de novo sequence and this confirmed this protein to be the MUP present in the urine of commensal rats.Conclusion: The present investigation confirms the presence of MUP with a molecular mass of 22.4 kDa in the urine of commensal rats. This protein may be involved in the binding of volatile molecules and opens up a discussion about how volatile and non-volatile molecules in the commensal rats' urine may contribute chemo-communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of sound transmission through the structure and reflection from the structure immersed in fluid media impose highly conflicting requirements on the design of the carpeted noise control linings. These requirements become even more stringent if the structure is expected to be moving with considerable speed particularly under intense hydrostatic pressure. Numerous configurations are possible for designing these linings. Therefore, in this paper, a few lining configurations are identified from the literature for parametric study so that the designer is provided with an environment to analyze and design the lining. A scheme of finite element analysis is used to analyze these linings for their acoustic performance. Commercial finite element software, NISA®, is used as a platform to develop a customized environment wherein design parameters of different configurations can be varied with consistency checks and generate the finite element meshes using the 8-noded hexahedral element. Four types of designs proposed and analysed here address the parameters of interest such as the echo reduction and the transmission loss. Study of the effect of different surface distributions of the cavities is carried out. Effect of static pressure on different designs is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A force-torque sensor capable of accurate measurement of the three components of externally applied forces and moments is required for force control in robotic applications involving assembly operations. The goal in this paper is to design a Stewart platform based force torque sensor at a near-singular configuration sensitive to externally applied moments. In such a configuration, we show an enhanced mechanical amplification of leg forces and thereby higher sensitivity for the applied external moments. In other directions, the sensitivity will be that of a normal load sensor determined by the sensitivity of the sensing element and the associated electronic amplification, and all the six components of the force and torque can be sensed. In a sensor application, the friction, backlash and other non-linearities at the passive spherical joints of the Stewart platform will affect the measurements in unpredictable ways. In this sensor, we use flexural hinges at the leg interfaces of the base and platform of the sensor. The design dimensions of the flexure joints in the sensor have been arrived at using FEA. The sensor has been fabricated, assembled and instrumented. It has been calibrated for low level loads and is found to show linearity and marked sensitivity to moments about the three orthogonal X, Y and Z axes. This sensor is compatible for usage as a wrist sensor for a robot under development at ISRO Satellite Centre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control. (C) 2011 Elsevier Ltd. All rights reserved.