345 resultados para State-derivative signals
em Indian Institute of Science - Bangalore - Índia
Resumo:
A hitherto unseen rotation of the isopropyl group in the solid state, predicted to be forbidden based on theoretical investigations, is reported. This C-C rotation observed during the temperature dependent single-crystal-to-single-crystal transformation is attributed to the concomitant changes in molecular structure and intermolecular packing.
Resumo:
Enhancement of the photoacoustic signal from condensed materials by several folds is achieved by the introduction of a liquid with high vapor pressure in the photoacoustic cell. The enhancement is especially marked for low absorption coefficients and high chopping frequencies. Typically the enhancement is two to nine times in the presence of diethyl ether at 293 K. A linear relationship is observed between the enhancement and the vapor pressure of the liquid.
Resumo:
The initial structural alteration of RNAase A due to acid denaturation (0.5 N HCl, 30 degrees C) that accompanies deamidation (without altering enzymic activity) has been dectected by spectrophotometric titration, fluorescence and ORD/CD measurements. It is shown that acid treated RNAase A has an altered conformation at neutral pH, 25 degrees C. This is characterized by the increased accessibility of buried tyrosine residue(s) towards the solvent. The most altered conformation of RNAase A is found in the 10 h acid-treated derivative. This has about 1.5 additional exposed tyrosine residues and a lesser amount of secondary structure than RNAase A. All three methods (titration, fluorescence and CD) established that the structural transition of RNAase A is biphasic. The first phase occurs within 1 h and the resulting subtle conformational change is constant up to 7 h. Following this, after the release of 0.55 mol of ammonia, the major conformational change begins. The altered conformation of the acid-denatured RNAase A could be reversed completely to the native state through a conformational change induced by substrate analogs like 2'- or 3'-CMP. Thus the monodeamidated derivative isolated from the acid-denatured RNAase A by phosphate is very similar to RNAase A in over-all conformation. The results suggest the possibility of flexibility in the RNAase A molecule that does not affect its catalytic activity, as probed through the tyrosine residues.
Resumo:
In the combinatorial method or Grassmann algebra formalism the ground state properties of the f J Ising model can be expressed in terms of the behaviour of the eigenvectors of a matrix. It is shown that a transition from localized to extended eigenvectors signals the breakdown of ferromagnetic rigidity.
Resumo:
Perfluoro substituted organic compounds have attracted attention owing to their unique structure and reactivity induced by the perfluoro effect. Fluoranil, a perfluoro derivative of p-benzoquinone, is the subject of this paper. Although the perfluoro effect in the ground state seems to have been well understood there is no information available about such effects on the excited state. Here, the time-resolved resonance Raman spectra of the triplet excited state of fluoranil are reported along with the Raman excitation profiles (REPs) of the various vibrational modes. The vibrational spectral analyses have been carried out by analogy with the fluoranil ground state, triplet benzoquinone, and triplet chloranil vibrational spectral assignments. Also, the assignments are further supported by the calculated frequencies using ab initio theoretical methods. It is observed that for fluoranil in the triplet excited state, due to the perfluoro effect, the structure is considerably less distorted than benzoquinone and also the electron delocalization in the pi* antibonding orbital is less than that of triplet excited state of benzoquinone.
Resumo:
This paper proposes a derivative-free two-stage extended Kalman filter (2-EKF) especially suited for state and parameter identification of mechanical oscillators under Gaussian white noise. Two sources of modeling uncertainties are considered: (1) errors in linearization, and (2) an inadequate system model. The state vector is presently composed of the original dynamical/parameter states plus the so-called bias states accounting for the unmodeled dynamics. An extended Kalman estimation concept is applied within a framework predicated on explicit and derivative-free local linearizations (DLL) of nonlinear drift terms in the governing stochastic differential equations (SDEs). The original and bias states are estimated by two separate filters; the bias filter improves the estimates of the original states. Measurements are artificially generated by corrupting the numerical solutions of the SDEs with noise through an implicit form of a higher-order linearization. Numerical illustrations are provided for a few single- and multidegree-of-freedom nonlinear oscillators, demonstrating the remarkable promise that 2-EKF holds over its more conventional EKF-based counterparts. DOI: 10.1061/(ASCE)EM.1943-7889.0000255. (C) 2011 American Society of Civil Engineers.
Resumo:
In this paper we discuss a novel procedure for constructing clusters of bound particles in the case of a quantum integrable derivative delta-function Bose gas in one dimension. It is shown that clusters of bound particles can be constructed for this Bose gas for some special values of the coupling constant, by taking the quasi-momenta associated with the corresponding Bethe state to be equidistant points on a single circle in the complex momentum plane. We also establish a connection between these special values of the coupling constant and some fractions belonging to the Farey sequences in number theory. This connection leads to a classification of the clusters of bound particles associated with the derivative delta-function Bose gas and allows us to study various properties of these clusters like their size and their stability under the variation of the coupling constant. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We analyze the spectral zero-crossing rate (SZCR) properties of transient signals and show that SZCR contains accurate localization information about the transient. For a train of pulses containing transient events, the SZCR computed on a sliding window basis is useful in locating the impulse locations accurately. We present the properties of SZCR on standard stylized signal models and then show how it may be used to estimate the epochs in speech signals. We also present comparisons with some state-of-the-art techniques that are based on the group-delay function. Experiments on real speech show that the proposed SZCR technique is better than other group-delay-based epoch detectors. In the presence of noise, a comparison with the zero-frequency filtering technique (ZFF) and Dynamic programming projected Phase-Slope Algorithm (DYPSA) showed that performance of the SZCR technique is better than DYPSA and inferior to that of ZFF. For highpass-filtered speech, where ZFF performance suffers drastically, the identification rates of SZCR are better than those of DYPSA.
Resumo:
Stimulated optical signals obtained by subjecting the system to a narrow band and a broadband pulse show both gain and loss Raman features at the red and blue side of the narrow beam, respectively. Recently observed temperature-dependent asymmetry in these features Mallick et al., J. Raman Spectrosc. 42, 1883 (2011); Dang et al., Phys. Rev. Lett. 107, 043001 (2011)] has been attributed to the Stokes and anti-Stokes components of the third-order susceptibility, chi((3)). By treating the setup as a steady state of an open system coupled to four quantum radiation field modes, we show that Stokes and anti-Stokes processes contribute to both the loss and gain resonances. chi((3)) predicts loss and gain signals with equal intensity for electronically off-resonant excitation. Some asymmetry may exist for resonant excitation. However, this is unrelated to the Stokes vs anti-Stokes processes. Any observed temperature-dependent asymmetry must thus originate from effects lying outside the chi((3)) regime.
Resumo:
Various ecological and other complex dynamical systems may exhibit abrupt regime shifts or critical transitions, wherein they reorganize from one stable state to another over relatively short time scales. Because of potential losses to ecosystem services, forecasting such unexpected shifts would be valuable. Using mathematical models of regime shifts, ecologists have proposed various early warning signals of imminent shifts. However, their generality and applicability to real ecosystems remain unclear because these mathematical models are considered too simplistic. Here, we investigate the robustness of recently proposed early warning signals of regime shifts in two well-studied ecological models, but with the inclusion of time-delayed processes. We find that the average variance may either increase or decrease prior to a regime shift and, thus, may not be a robust leading indicator in time-delayed ecological systems. In contrast, changing average skewness, increasing autocorrelation at short time lags, and reddening power spectra of time series of the ecological state variable all show trends consistent with those of models with no time delays. Our results provide insights into the robustness of early warning signals of regime shifts in a broader class of ecological systems.
Resumo:
The dibenzyl derivative of poly(3,4-propylenedioxythiophene) (PProDOT-Bz(2)) thin film is deposited onto ITO-coated glass substrate by electropolymerization technique. The electropolymerization of ProDOT-Bz(2) is carried out by a three-electrode electrochemical cell. The cyclic voltammogram shows the redox properties of electrochemically prepared films deposited at different scan rates. The thin films prepared were characterized for its morphological properties to study the homogeniety. Classic six-layer structure of PProDOT-Bz(2) electrochromic device using this material was fabricated and reported for the first and its characterizations such as spectroelectrochemical, switching kinetics, and chronoamperometric studies are performed. The color contrast of the thin film and the device achieved are 64 and 40%, respectively, at lambda(max) (628 nm). The switching time is recorded and the observed values are 5 s from the coloring state to the bleaching state and vice versa. The chronoamperometry shows that the device performed up to 400 cycles, and it is capable of working up to 35 cycles without any degradation. (C) 2014 Wiley Periodicals, Inc.
Resumo:
Using a diagrammatic superoperator formalism we calculate optical signals at molecular junctions where a single molecule is coupled to two metal leads which are held at different chemical potentials. The molecule starts in a nonequilibrium steady state whereby it continuously exchanges electrons with the leads with a constant electron flux. Expressions for frequency domain optical signals measured in response to continuous laser fields are derived by expanding the molecular correlation functions in terms of its many-body states. The nonunitary evolution of molecular states is described by the quantum master equation. (C) 2014 AIP Publishing LLC.
Resumo:
The N-alkyl derivative of 1,9-pyrazoloanthrone has been synthesized, characterized and evaluated as a potent sensor for picric acid.
Resumo:
Severe sepsis or septic shock is one of the rising causes for mortality worldwide representing nearly 10% of intensive care unit admissions. Susceptibility to sepsis is identified to be mediated by innate pattern recognition receptors and responsive signaling pathways of the host. The c-Jun N-terminal Kinase (JNK)-mediated signaling events play critical role in bacterial infection triggered multi-organ failure, cardiac dysfunction and mortality. In the context of kinase specificities, an extensive library of anthrapyrazolone analogues has been investigated for the selective inhibition of c-JNK and thereby to gain control over the inflammation associated risks. In our comprehensive biochemical characterization, it is observed that alkyl and halogen substitution on the periphery of anthrapyrazolone increases the binding potency of the inhibitors specifically towards JNK. Further, it is demonstrated that hydrophobic and hydrophilic interactions generated by these small molecules effectively block endotoxin-induced inflammatory genes expression in in vitro and septic shock in vivo, in a mouse model, with remarkable efficacies. Altogether, the obtained results rationalize the significance of the diversity oriented synthesis of small molecules for selective inhibition of JNK and their potential in the treatment of severe sepsis.
Resumo:
We address the problem of two-dimensional (2-D) phase retrieval from magnitude of the Fourier spectrum. We consider 2-D signals that are characterized by first-order difference equations, which have a parametric representation in the Fourier domain. We show that, under appropriate stability conditions, such signals can be reconstructed uniquely from the Fourier transform magnitude. We formulate the phase retrieval problem as one of computing the parameters that uniquely determine the signal. We show that the problem can be solved by employing the annihilating filter method, particularly for the case when the parameters are distinct. For the more general case of the repeating parameters, the annihilating filter method is not applicable. We circumvent the problem by employing the algebraically coupled matrix pencil (ACMP) method. In the noiseless measurement setup, exact phase retrieval is possible. We also establish a link between the proposed analysis and 2-D cepstrum. In the noisy case, we derive Cramer-Rao lower bounds (CRLBs) on the estimates of the parameters and present Monte Carlo performance analysis as a function of the noise level. Comparisons with state-of-the-art techniques in terms of signal reconstruction accuracy show that the proposed technique outperforms the Fienup and relaxed averaged alternating reflections (RAAR) algorithms in the presence of noise.