47 resultados para Silicon on insulator technology
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, we analyze the combined effects of size quantization and device temperature variations (T = 50K to 400 K) on the intrinsic carrier concentration (n(i)), electron concentration (n) and thereby on the threshold voltage (V-th) for thin silicon film (t(si) = 1 nm to 10 nm) based fully-depleted Double-Gate Silicon-on-Insulator MOSFETs. The threshold voltage (V-th) is defined as the gate voltage (V-g) at which the potential at the center of the channel (Phi(c)) begins to saturate (Phi(c) = Phi(c(sat))). It is shown that in the strong quantum confinement regime (t(si) <= 3nm), the effects of size quantization far over-ride the effects of temperature variations on the total change in band-gap (Delta E-g(eff)), intrinsic carrier concentration (n(i)), electron concentration (n), Phi(c(sat)) and the threshold voltage (V-th). On the other hand, for t(si) >= 4 nm, it is shown that size quantization effects recede with increasing t(si), while the effects of temperature variations become increasingly significant. Through detailed analysis, a physical model for the threshold voltage is presented both for the undoped and doped cases valid over a wide-range of device temperatures, silicon film thicknesses and substrate doping densities. Both in the undoped and doped cases, it is shown that the threshold voltage strongly depends on the channel charge density and that it is independent of incomplete ionization effects, at lower device temperatures. The results are compared with the published work available in literature, and it is shown that the present approach incorporates quantization and temperature effects over the entire temperature range. We also present an analytical model for V-th as a function of device temperature (T). (C) 2013 AIP Publishing LLC.
Effect Of Molybdenum And Silicon On The Electrochemical Corrosion Behavior Of Fenib Metallic Glasses
Resumo:
This paper reports on the fabrication of cantilever silicon-on-insulator (SOI) optical waveguides and presents solutions to the challenges of using a very thin 260-nm active silicon layer in the SOI structure to enable single-transverse-mode operation of the waveguide with minimal optical transmission losses. In particular, to ameliorate the anchor effect caused by the mean stress difference between the active silicon layer and buried oxide layer, a cantilever flattening process based on Ar plasma treatment is developed and presented. Vertical deflections of 0.5 mu m for 70-mu m-long cantilevers are mitigated to within few nanometers. Experimental investigations of cantilever mechanical resonance characteristics confirm the absence of significant detrimental side effects. Optical and mechanical modeling is extensively used to supplement experimental observations. This approach can satisfy the requirements for on-chip simultaneous readout of many integrated cantilever sensors in which the displacement or resonant frequency changes induced by analyte absorption are measured using an optical-waveguide-based division multiplexed system.
Resumo:
Stress induced by Focused Ion Beam (FIB) milling of cantilevers fabricated on silicon-on-insulator (SOI) wafer has been studied. Milling induces stress gradients ranging from -10MPa/μm to -120MPa/μm, depending on the location of cantilevers from the point of milling. Simulations were done to estimate the stress in the milled cantilevers.
Resumo:
In this paper, a simple but accurate semi analytical charge sheet model is presented for threshold voltage of accumulation mode polycrystalline silicon on insulator (PSOI) MOSFETs. In this model, we define the threshold voltage (V-T) of the polysilicon accumulation mode MOSFET as the gate voltage required to raise the surface potential (phi(s)) to a value phi(sT) necessary to overcome the charge trapping in the grain boundary and to create channel accumulation charge that is equal to the channel accumulation charge available in the case of single crystal silicon accumulation mode MOSFET at that phi(sT). The correctness of the model is demonstrated by comparing the theoretically estimated values of threshold voltage with the experimentally measured threshold voltages on the accumulation mode PSOI MOSFETs fabricated in the laboratory using LPCVD polysilicon layers doped with boron to achieve dopant densities in the range 3.3 x 10(-15)-5 x 10(17)/cm(3). Further, it is shown that the threshold voltage values of accumulation mode PSOI MOSFETs predicted by the present model match very closely with the experimental results, better than those obtained with the models previously reported in the literature. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper reports analytical modeling, simulation and experimental validation for switching and release times of an electrostatically actuated micromachined switch. Presented work is an extension of our earlier work [1] that analytically argued, and numerically and experimentally demonstrated, why pull-in time is larger that pull-up time when the actuation voltage is less than twice of the pull-in voltage. In this paper, switching dynamics is investigated under the influence of squeeze-film damping. Tests were performed on SOI (silicon-on-insulator) based parallel beams structures.Typical voltage requirement for actuation is in the range of 10-30 V. All the experiments were performed in normal atmospheric pressure. Measurement results confirm that the quality factor Q has appreciable effect on the release time compared to the switching time. The quality factor Q is extracted from the response measurement and compared with the ANSYS simulation result. In addition, the dynamic pull-in effect has also been studied and reported in this paper. A contribution of this work includes the effect of various phenomena such as squeeze-film damping, dynamic pull-in, and frequency pull-in effects on the switching dynamics of a MEMS switch.
Resumo:
A novel CMOS Schmitt trigger using only four MOS transistors is discussed. This circuit, which works on the principle of load-coupled regenerative feedback, can be implemented using conventional CMOS technology with only one extra fabrication step. It can be implemented even more easily in CMOS/SOS (silicon-on-sapphire) integrated circuits. The hysteresis of this Schmitt trigger can be controlled by a proper choice of the transistor geometries.
Resumo:
In orthogonal frequency-division multiple access (OFDMA) on the uplink, the carrier frequency offsets (CFOs) and/or timing offsets (TOs) of other users with respect to a desired user can cause multiuser interference (MUI). Analytically evaluating the effect of these CFO/TO-induced MUI on the bit error rate (BER) performance is of interest. In this paper, we analyze the BER performance of uplink OFDMA in the presence of CFOs and TOs on Rician fading channels. A multicluster multipath channel model that is typical in indoor/ultrawideband and underwater acoustic channels is considered. Analytical BER expressions that quantify the degradation in BER due to the combined effect of both CFOs and TOs in uplink OFDMA with M-state quadrature amplitude modulation (QAM) are derived. Analytical and simulation BER results are shown to match very well. The derived BER expressions are shown to accurately quantify the performance degradation due to nonzero CFOs and TOs, which can serve as a useful tool in OFDMA system design.
Resumo:
We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time-resolved differential reflectivity and transmission spectroscopy at 3.15 eV and 1.57 eV photon energies. The complex behaviour of the differential transmission and reflectivity transients is the mixed contributions from the crystalline core and the amorphous silicon on the nanowire surface and the substrate where competing effects of state-filling and photoinduced absorption govern the carrier dynamics. Faster relaxation rates are observed on increasing the photogenerated carrier density. Independent experimental results on crystalline silicon-on-sapphire (SOS) help us in separating the contributions from the carrier dynamics in crystalline core and the amorphous regions in the nanowire samples. Further, single-beam z-scan nonlinear transmission experiments at 1.57 eV in both open- and close-aperture configurations yield two-photon absorption coefficient beta (similar to 3 cm/GW) and nonlinear refraction coefficient gamma (-2.5 x 10 (-aEuro parts per thousand 4) cm(2)/GW).
Resumo:
Ceramic/Porcelain suspension disc insulators are widely used in power systems to provide electrical insulation and mechanically support for high-voltage transmission lines. These insulators are subjected to a variety of stresses, including mechanical, electrical and environmental. These stresses act in unison. The exact nature and magnitude of these stresses vary significantly and depends on insulator design, application and its location. Due to various reasons the insulator disc can lose its electrical insulation properties without any noticeable mechanical failure. Such a condition while difficult to recognize, can enhance the stress on remaining healthy insulator discs in the string further may lead to a flashover. To understand the stress enhancement due to faulty discs in a string, attempt has been made to simulate the potential and electric field profiles for various disc insulators presently used in the country. The results of potential and electric filed stress obtained for normal and strings with faulty insulator discs are presented.
Resumo:
Forested areas play a dominant role in the global hydrological cycle. Evapotranspiration is a dominant component most of the time catching up with the rainfall. Though there are sophisticated methods which are available for its estimation, a simple reliable tool is needed so that a good budgeting could be made. Studies have established that evapotranspiration in forested areas is much higher than in agricultural areas. Latitude, type of forests, climate and geological characteristics also add to the complexity of its estimation. Few studies have compared different methods of evapotranspiration on forested watersheds in semi arid tropical forests. In this paper a comparative study of different methods of estimation of evapotranspiration is made with reference to the actual measurements made using all parameter climatological station data of a small deciduous forested watershed of Mulehole (area of 4.5 km2 ), South India. Potential evapotranspiration (ETo) was calculated using ten physically based and empirical methods. Actual evapotranspiration (AET) has been calculated through computation of water balance through SWAT model. The Penman-Montieth method has been used as a benchmark to compare the estimates arrived at using various methods. The AET calculated shows good agreement with the curve for evapotranspiration for forests worldwide. Error estimates have been made with respect to Penman-Montieth method. This study could give an idea of the errors involved whenever methods with limited data are used and also show the use indirect methods in estimation of Evapotranspiration which is more suitable for regional scale studies.
Resumo:
Glaucoma is the second leading cause of blindness worldwide. Often, the optic nerve head (ONH) glaucomatous damage and ONH changes occur prior to visual field loss and are observable in vivo. Thus, digital image analysis is a promising choice for detecting the onset and/or progression of glaucoma. In this paper, we present a new framework for detecting glaucomatous changes in the ONH of an eye using the method of proper orthogonal decomposition (POD). A baseline topograph subspace was constructed for each eye to describe the structure of the ONH of the eye at a reference/baseline condition using POD. Any glaucomatous changes in the ONH of the eye present during a follow-up exam were estimated by comparing the follow-up ONH topography with its baseline topograph subspace representation. Image correspondence measures of L-1-norm and L-2-norm, correlation, and image Euclidean distance (IMED) were used to quantify the ONH changes. An ONH topographic library built from the Louisiana State University Experimental Glaucoma study was used to evaluate the performance of the proposed method. The area under the receiver operating characteristic curves (AUCs) was used to compare the diagnostic performance of the POD-induced parameters with the parameters of the topographic change analysis (TCA) method. The IMED and L-2-norm parameters in the POD framework provided the highest AUC of 0.94 at 10 degrees. field of imaging and 0.91 at 15 degrees. field of imaging compared to the TCA parameters with an AUC of 0.86 and 0.88, respectively. The proposed POD framework captures the instrument measurement variability and inherent structure variability and shows promise for improving our ability to detect glaucomatous change over time in glaucoma management.
Resumo:
In this paper we give the performance of MQAM OFDM based WLAN in presence of single and multiple channels Zigbee interference. An analytical model for getting symbol error rate (SER) in presence of single and multiple channel Zigbee interference in AWGN and Rayleigh fading channel for MQAM OFDM system is given. Simulation results are compared with analytical symbol error rate (SER) of the MQAM-OFDM system. For analysis we have modeled the Zigbee interference using the power spectral density (PSD) of OQPSK modulation and finding the average interference power for each sub-carrier of the OFDM system. Then we have averaged the SER over all WLAN sub-carriers. Simulations closely match with the analytical models. It is seen from simulation and analytical results that performance of WLAN is severely affected by Zigbee interference. Symbol error rate (SER) for 16QAM and 64QAM OFDM system is of order of 10(-2) for SIR (signal to interference ratio) of 20dB and 30dB respectively in presence of single Zigbee interferer inside the WLAN frequency band for Rayleigh fading channel. For SIR values more than 30dB and 40dB the SER approaches the SER without interference for 16QAM and 64QAM OFDM system respectively.
Resumo:
Sun salutation is a part of yoga. It consists of a sequence of postures done with synchronized breathing. The practice of few cycles of sun salutation is known to help in maintaining good health and vigor. The practice of sun salutation does not need any extra gadgets. Also it is very much aerobic and invigorates the body and the mind.