160 resultados para SiO(2)
em Indian Institute of Science - Bangalore - Índia
Resumo:
The removal of native oxide from Si (1 1 1) surfaces was investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectra (SIMS) depth profiles. Two different oxide removal methods, performed under ultrahigh-vacuum (UHV) conditions, were carried out and compared. The first cleaning method is thermal desorption of oxide at 900 degrees C. The second method is the deposition of metallic gallium followed by redesorption. A significant decrease in oxygen was achieved by thermal desorption at 900 degrees C under UHV conditions. By applying a subsequent Ga deposition/redesorption, a further reduction in oxygen could be achieved. We examine the merits of an alternative oxide desorption method via conversion of the stable SiO(2) surface oxide into a volatile Ca(2)O oxide by a supply of Ga metals. Furthermore, ultra thin films of pure silicon nitride buffer layer were grown on a Si (1 1 1) surface by exposing the surface to radio-frequency (RF) nitrogen plasma followed by GaN growth. The SIMS depth profile shows that the oxygen impurity can be reduced at GaN/beta-Si(3)N(4)/Si interfaces by applying a subsequent Ga deposition/redesorption. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (1 0 0) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200 degrees C for their possible use in optoelectronic applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) ferroelectric-relaxor thin films have been deposited on La(0.5)nSr(0.5)CoO(3)/(1 1 1) Pt/TiO(2)/SiO(2)/Si by pulsed laser ablation at various oxygen partial pressures in the range 0.05 to 0.4 Torr. All the films have a rhombohedral perovskite structure. The grain morphology and orientation are drastically affected by the oxygen pressure, studied by x-ray diffraction and scanning electron microscopy. The domain structure investigations by dynamic contact electrostatic force microscopy have revealed that the distribution of polar nanoregions and their dynamics is influenced by the grain morphology, orientation and more importantly, oxygen vacancies. The correlation length extracted from autocorrelation function images has shown that the polarization disorder decreases with oxygen pressure up to 0.3 Torr. The presence of polarized domains and their electric field induced switching is discussed in terms of internal bias field and domain wall pinning. Film deposited at 0.4 Torr presents a curious case with unique triangular grain morphology and large polarization disorder.
Resumo:
We present low-temperature electrical transport experiments in five field-effect transistor devices consisting of monolayer, bilayer, and trilayer MoS(2) films, mechanically exfoliated onto Si/SiO(2) substrate. Our experiments reveal that the electronic states In all films are localized well up to room temperature over the experimentally accessible range of gate voltage. This manifests in two-dimensional (2D) variable range hopping (VRH) at high temperatures, while below similar to 30 K, the conductivity displays oscillatory structures In gate voltage arising from resonant tunneling at the localized sites. From the correlation energy (T(0)) of VRH and gate voltage dependence of conductivity, we suggest that Coulomb potential from trapped charges In the substrate is the dominant source of disorder in MoS(2) field-effect devices, which leads to carrier localization, as well.
Resumo:
Titanium dioxide (TiO(2)) films have been deposited on glass and p-silicon (1 0 0) substrates by DC magnetron sputtering technique to investigate their structural, electrical and optical properties. The surface composition of the TiO(2) films has been analyzed by X-ray photoelectron spectroscopy. The TiO(2) films formed on unbiased substrates were amorphous. Application of negative bias voltage to the substrate transformed the amorphous TiO(2) into polycrystalline as confirmed by Raman spectroscopic studies. Thin film capacitors with configuration of Al/TiO(2)/p-Si have been fabricated. The leakage current density of unbiased films was 1 x10(-6) A/cm(2) at a gate bias voltage of 1.5 V and it was decreased to 1.41 x 10(-7) A/cm(2) with the increase of substrate bias voltage to -150 V owing to the increase in thickness of interfacial layer of SiO(2). Dielectric properties and AC electrical conductivity of the films were studied at various frequencies for unbiased and biased at -150 V. The capacitance at 1 MHz for unbiased films was 2.42 x 10(-10) F and it increased to 5.8 x 10(-10) F in the films formed at substrate bias voltage of -150 V. Dielectric constant of TiO(2) films were calculated from capacitance-voltage measurements at 1 MHz frequency. The dielectric constant of unbiased films was 6.2 while those formed at -150 V it increased to 19. The optical band gap of the films decreased from 3.50 to 3.42 eV with the increase of substrate bias voltage from 0 to -150 V. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
We show simultaneous p- and n-type carrier injection in a bilayer graphene channel by varying the longitudinal bias across the channel and the top-gate voltage. The top gate is applied electrochemically using solid polymer electrolyte and the gate capacitance is measured to be 1.5 microF cm(-2), a value about 125 times higher than the conventional SiO(2) back-gate capacitance. Unlike the single-layer graphene, the drain-source current does not saturate on varying the drain-source bias voltage. The energy gap opened between the valence and conduction bands using top- and back-gate geometry is estimated.
Resumo:
Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Five stereochemically constrained analogs of the chemotactic tripeptide incorporating 1-aminocycloalkane-1-carboxylic acid (Ac(n)c) and alpha,alpha-dialkylglycines (Deg, diethylglycine; Dpg, n,n-dipropylglycine and Dbg, n,n-dibutylglycine) at position 2 have been synthesized. NMR studies of peptides For-Met-Xxx-Phe-OMe (Xxx = Ac(7)c, I; Ac(8)c, II; Deg, III; Dpg, IV and Dbg, V; For, formyl) establish that peptides with cycloalkyl residues, I and II, adopt folded beta-turn conformations in CDCl3 and (CD3)(2)SO. In contrast, analogs with linear alkyl sidechains, III-V, favour fully extended (C-5) conformations in solution. Peptides I-V exhibit high activity in inducing beta-glucosaminidase release from rabbit neutrophils, with ED(50) values ranging from 1.4-8.0 x 10(-11)M. In human neutrophils the Dxg peptides III-V have ED(50) values ranging from 2.3 x 10(-8) to 5.9 x 10(-10) M, with the activity order being V > IV > III. While peptides I-IV are less active than the parent. For-Met-Leu-Phe-OH, in stimulating histamine release from human basophils, the Dbg peptide V is appreciably more potent, suggesting its potential utility as a probe for formyl peptide receptors.
Resumo:
The title compound, C16H18N2O2, is an important precursor in the synthesis of 1,2,3,4-tetrahydropyrazinoindoles, which show excellent antihistamine, antihypertensive and central nervous system depressant properties. The carbethoxy group attached to C2 and the planar cyanoethyl group attached to N1 make dihedral angles of 11.0(4) and 75.0(3)degrees, respectively, with the mean plane of the indole ring, The C-C=N chain is linear with a bond angle of 179.3 (4)degrees.
Resumo:
The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail
Resumo:
High microwave susceptibility of NaH2PO4 . 2H(2)O has been discovered, This hydrated acid phosphate of sodium can be heated upto 1000 K or more when exposed to 2.45 GHz microwaves. Using this, a novel microwave-assisted preparation of a number of important crystalline and glassy materials with NASICON-type chemistry has been accomplished in less than 8 min which is only a fraction of the time required for conventional synthetic procedures, The present single-shot approach to the preparation of phosphates is attractive in terms of its simplicity, rapidity, and general applicability, A ''step-ladder'' heating mechanism has been proposed to account for the high microwave absorbing ability of NaH2PO4 . 2H(2)O.
Resumo:
Asymmetric tri-bridged diruthenium(III) complexes, [Ru2O(O(2)CR)(3)(en) (PPh(3))(2)](ClO4) (R = C6H4-p-X: X = OMe (1a), Me (1b); en=1,2-diaminoethane), were prepared and structurally characterized. Complex 1a 3CHCl(3), crystallizes in the triclinic space group P (1) over bar with a = 14.029(5), b = 14.205(5), c = 20.610(6) Angstrom, alpha= 107.26(3), beta = 101.84(3), gamma= 97.57(3)degrees, V= 3756(2) Angstrom(3) and Z = 2. The complex has an {Ru-2(mu-O)(mu-O(2)CR)(2)(2+)} core and exhibits [O4PRu(mu-O)RuPO2N2](+) coordination environments for the metal centers. The novel structural feature is the asymmetric arrangement of ligands at the terminal sites of the core which shows an Ru... Ru separation of 3.226(3) Angstrom and an Ru-O-Ru angle of 119.2(5)degrees. An intense visible band observed near 570 nm is assigned to a charge transfer transition involving the d pi-Ru(III) and p pi-mu-O Orbitals. Cyclic voltammetry of the complexes displays a reversible Ru-2(III,III) reversible arrow Ru-2(III,IV) couple near 0.8 V (versus SCE) in MeCN-0.1 M TBAP.
Resumo:
The title compound, C4H5N3O2, features an essentially planar molecule (r.m.s. deviation for all non-H atoms = 0.013 angstrom). The crystal structure is stabilized by intermolecular N-H center dot center dot center dot O hydrogen bonds and pi-pi stacking interactions (centroid centroid distance 3.882 angstrom).
Resumo:
The title molecule, C21H18O8, crystallizes in two crystal polymorphs, see also Nallasivam, Nethaji, Vembu & Jaswant [Acta Cryst. (2009), E65, o314-o315]. The molecules of both polymorphs differ by the conformation of the oxomethylacetate groups. The title molecules are rather planar compared to the molecules of the other polymorph. In the title molecule, one of the oxomethylacetate groups is disordered (occupancies of 0.6058/0.3942). The structures of both polymorphs are stabilized by C-H center dot center dot center dot O and C-H center dot center dot center dot pi interactions. Due to the planarity of the title molecules and similar intermolecular interactions, the title molecules are more densely packed than those of the other polymorph.