117 resultados para Sand

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of laboratory investigation carried out on Ahmedabad sand on the liquefaction and pore water pressure generation during strain controled cyclic loading. Laboratory experiments were carried out on representative natural sand samples (base sand) collected from earthquake-affected area of Ahmedabad City of Gujarat State in India. A series of strain controled cyclic triaxial tests were carried out on isotropically compressed samples to study the influence of different parameters such as shear strain amplitude, initial effective confining pressure, relative density and percentage of non-plastic fines on the behavior of liquefaction and pore water pressure generation. It has been observed from the laboratory investigation that the potential for liquefaction of the sandy soils depends on the shear strain amplitude, initial relative density, initial effective confining pressure and non-plastic fines. In addition, an empirical relationship between pore pressure ratio and cycle ratio independent of the number of cycles of loading, relative density, confining pressure, amplitude of shear strain and non-plastic fines has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using small scale model tests, the interference effect on the ultimate bearing capacity of two closely spaced strip footings, placed on the surface of dry sand, was investigated. At any time, the footings were assumed to (1) carry exactly the same magnitude of load; and (2) settle to the same extent. No tilt of the footing was allowed. The effect of clear spacing (s) between two footings was explicitly studied. An interference of footings leads to a significant increase in their bearing capacity; the interference effect becomes even more substantial with an increase in the relative density of sand. The bearing capacity attains a peak magnitude at a certain (critical) spacing between two footings. The experimental observations presented in this technical note were similar to those given by different available theories. However, in a quantitative sense, the difference between the experiments and theories was seen to be still significant and it emphasizes the need of doing a further rigorous analysis in which the effect of stress level on the shear strength parameters of soil mass can be incorporated properly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential benefits of providing geocell reinforced sand mattress over clay subgrade with void have been investigated through a series of laboratory scale model tests. The parameters varied in the test programme include, thickness of unreinforced sand layer above clay bed, width and height of geocell mattress, relative density of the sand fill in the geocells, and influence of an additional layer of planar geogrid placed at the base of the geocell mattress. The test results indicate that substantial improvement in performance can be obtained with the provision of geocell mattress, of adequate size, over the clay subgrade with void. In order to have beneficial effect, the geocell mattress must spread beyond the void at least a distance equal to the diameter of the void. The influence of the void over the performance of the footing reduces for height of geocell mattress greater than 1.8 times the diameter of the footing. Better improvement in performance is obtained for geocells filled with dense soil. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a continuation of the authors' recent work, the ultimate tip resistance of a miniature cone using triaxial equipment was determined for samples of dry sand mixed with dry fly ash. The effect of (i) the proportion of fly ash, (ii) the relative density of samples, and (iii) the vertical overburden pressure was examined. It was noted that an addition of fly ash in sand for the same range of relative density leads to a significant reduction in the ultimate tip resistance of the cone (q(cu)). This occurs due to a decrease in the friction angle (phi) of the sample with an increase in the fly ash content for a given relative density. For phi greater than about 30 degrees, two widely used correlation curves from published literature, providing the relationships between q(cu) and phi for cohesionless soils, were found to provide satisfactory predictions, even for sand - fly ash mixtures. As was expected, the values of qcu increase continuously with an increase in the relative density of the soil mass and the vertical effective ( overburden) stress on the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results from laboratory model tests and numerical simulations on square footings resting on sand are presented. Bearing capacity of footings on geosynthetic reinforced sand is evaluated and the effect of various reinforcement parameters like the type and tensile strength of geosynthetic material, amount of reinforcement, layout and configuration of geosynthetic layers below the footing on the bearing capacity improvement of the footings is studied through systemati model studies. A steel tank of size 900 x 900 x 600 mm is used for conducting model tests. Four types of grids, namely strong biaxial geogrid, weak biaxial geogrid, uniaxial geogrid and a geonet, each with different tensile strength, are used in the tests. Geosynthetic reinforcement is provided in the form of planar layers, varying the depth of reinforced zone below the footing, number of geosynthetic layers within the reinforced zone and the width of geosynthetic layers in different tests. Influence of all these parameters on the bearing capacity improvement of square footing and its settlement is studied by comparing with the test on unreinforced sand. Results show that the effective depth of reinforcement is twice the width of the footing and optimum spacing of geosynthetic layers is half the width of the footing. It is observed that the layout and configuration of reinforcement play a vital role in bearing capacity improvement rather than the tensile strength of the geosynthetic material. Experimental observations are supported by the findings from numerical analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical uplift resistance of two interfering rigid rough strip anchors embedded horizontally in sand at shallow depths has been examined. The analysis is performed by using an upper bound theorem o limit analysis in combination with finite elements and linear programming. It is specified that both the anchors are loaded to failure simultaneously at the same magnitude of the failure load. For different clear spacing (S) between the anchors, the magnitude of the efficiency factor (xi(gamma)) is determined. On account of interference, the magnitude of xi(gamma) is found to reduce continuously with a decrease in the spacing between the anchors. The results from the numerical analysis were found to compare reasonably well with the available theoretical data from the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The critical stream power criterion may be used to describe the incipient motion of cohesionless particles of plane sediment beds. The governing equation relating ``critical stream power'' to ``shear Reynolds number'' is developed by using the present experimental data as well as the data from several other sources. Simultaneously, a resistance equation, relating the ``particle Reynolds number'' to the``shear Reynolds number'' is developed for plane sediment beds in wide channels with little or no transport. By making use of these relations, a procedure is developed to design plane sediment beds such that any two of the four design variables, including particle size, energy/friction slope, flow depth, and discharge per unit width in the channel should be known to predict the remaining two variables. Finally, a straightforward design procedure using design tables/design curves and analytical methods is presented to solve six possible design problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistivity and dielectric constant are important parameters which influence the separation of particles in a drum-type electrostatic separator. The paper provides details of the measurement of the parameters and data on the magnitude of resistivity and dielectric constant of the minerals of beach sand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of laboratory model loading tests and numerical studies carried out on square footings supported on geosynthetic reinforced sand beds. The relative performance of different forms of geosynthetic reinforcement (i.e. geocell, planar layers and randomly distributed mesh elements) in foundation beds is compared; using same quantity of reinforcement in each test. A biaxial geogrid and a geonet are used for reinforcing the sand beds. Geonet is used in two forms of reinforcement, viz. Planar layers and geocell, while the biaxial geogrid was used in three forms of reinforcement, viz. planar layers, geocell and randomly distributed mesh elements. Laboratory load tests on unreinforced and reinforced footings are simulated in a numerical model and the results are analyzed to understand the distribution of displacements and stresses below the footing better. Both the experimental and numerical studies demonstrated that the geocell is the most advantageous form of soil reinforcement technique of those investigated, provided there is no rupture of the material during loading. Geogrid used in the form of randomly distributed mesh elements is found to be inferior to the other two forms. Some significant observations on the difference in reinforcement mechanism for different forms of reinforcement are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crucial role of oxide surface chemical composition on ion transport in "soggy sand" electrolytes is discussed in a systematic manner. A prototype soggy sand electrolytic system comprising aerosil silica functionalized with various hydrophilic and hydrophobic moieties dispersed in lithium perchlorate-ethylene glycol solution was used for the study. Detailed rheology studies show that the attractive particle network in the case of the composite with unmodified aerosil silica (with surface silanol groups) is most favorable for percolation in ionic conductivity, as well as rendering the composite with beneficial elastic mechanical properties: Though weaker in strength compared to the composite with unmodified aerosil particles, attractive particle networks are also observed in composites of aerosil particles with surfaces partially substituted with hydrophobic groups. The percolation in ionic conductivity is, however, dependent on the size of the hydrophobic moiety. No spanning attractive particle network was formed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol), and as a result, no percolation in ionic conductivity was observed. The composite with hydrophilic particles was a sol, contrary to gels obtained in the case of unmodified aerosil, and partially substituted with hydrophobic groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of seepage in the design of channels is discussed. Experimental investigations reveal that seepage, either in the downward direction (suction) or in the upward direction (injection), can significantly change the resistance as well as the mobility of the sand-bed particles. A resistance equation relating 'particle Reynolds number' and 'shear Reynolds number' under seepage conditions is developed for plane sediment beds. Finally, a detailed design procedure of the plane sediment beds affected by seepage is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seepage through a sand bed affects the channel hydrodynamics, which in turn alters channel stability. Thus, the effect of seepage on its hydrodynamic parameters needs to be ascertained. The present work analyses spatially varied flow of a sand-bed channel subjected to seepage in the downward direction through a sand bed. Numerically calculated flow profiles affected by seepage have been verified using experimental observations. The present work also analyses the friction slope, velocity and bed shear stress variations along the channel for both seepage and no-seepage conditions. It was found that the downward seepage-induced channel flow has larger friction slope and bed shear stress than that of no-seepage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of oxide surface chemical composition and solvent on ion solvation and ion transport of ``soggy sand'' electrolytes are discussed here. A ``soggy sand'' electrolyte system comprising dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate methoxy polyethylene glycol solution was employed for the study. Static and dynamic rheology measurements show formation of an attractive particle network in the case of the composite with unmodified aerosil silica (i.e., with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e., for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. No enhancement in ionic conductivity compared to the liquid electrolyte was observed in the case of the unmodified silica. This was attributed to the existence of a very strong particle network, which led to the ``expulsion'' of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity dependent on the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol, and no percolation in ionic conductivity was observed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results of triaxial compression tests on sand reinforced with different types of geosynthetics in different layer configurations to study the effect of quantity of reinforcement and tensile strength of the geosynthetic material on the mechanical behavior of geosynthetic-reinforced sand. The reinforcement types used are woven geotextile, geogrid, and polyester film. The layer configurations used are two, three, four, and eight horizontal reinforcing layers in a triaxial test sample. From the triaxial tests, it is found that the geosynthetic reinforcement imparts cohesive strength to otherwise cohesionless sand. The effect of reinforcement on the friction angle was found to be insignificant. The magnitude of imparted apparent cohesion is found to depend not only on the tensile strength of the geosynthetic material but also the surface roughness changes during loading. Special triaxial tests using rice flour as the reinforced medium, microscopic images, and surface roughness studies revealed the effect of indent formation on the surface of polyester film, which was the reason for the unusually high strength exhibited by the sand reinforced with polyester film.