111 resultados para Replication protein A subunit 70 kDa
em Indian Institute of Science - Bangalore - Índia
Resumo:
The structural proteins of mycobacteriophage I3 have been analysed by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis (SDS-PAGE), radioiodination and immunoblotting. Based on their abundance the 34- and 70-kDa bands appeared to represent the major structural proteins. Successful cloning and expression of the 70-kDa protein-encoding gene of phage I3 in Escherichia coli and its complete nucleotide sequence determination have been accomplished, A second (partial) open reading frame following the stop codon for the 70-kDa protein was also identified within the cloned fragment. The deduced amino-acid sequence of the 70-kDa protein and the codon usage patterns indicated the preponderance of codons, as predicted from the high G+C content of the genomic DNA of phage I3.
Resumo:
We have purified phage lambda beta protein produced by a recombinant plasmid carrying bet gene and confirm that it forms a complex with a protein of relative molecular mass 70 kDa. Therefore, beta protein, a component of general genetic recombination, is associated with two functionally diverse complexes; one containing exonuclease and the other 70 kDa protein. Using a number of independent methods, we show that 70 kDa protein is the ribosomal S1 protein of E. coli. Further, the association of 70 kDa protein with beta protein is biologically significant, as the former inhibits joining of the terminal ends of lambda chromosome and renaturation of complementary single stranded DNA promoted by the latter. More importantly, these findings initiate an understanding of an important mode of host- virus interaction in general with specific implication(s) in homologous genetic recombination.
Resumo:
The red genes of phage lambda specify two proteins, exonuclease and beta protein, which are essential for its general genetic recombination in recA- cells. These proteins seem to occur in vivo as an equimolar complex. In addition, beta protein forms a complex with another polypeptide, probably of phage origin, of Mr 70,000. The 70-kDa protein appears to be neither a precursor nor an aggregated form of either exonuclease or beta protein, since antibodies directed against the latter two proteins failed to react with 70-kDa protein on Ouchterlony double diffusion analysis. beta protein promotes Mg2+-dependent renaturation of complementary strands (Kmiec, E., and Holloman, W. K. (1981) J. Biol. Chem. 256, 12636-12639). To look for other pairing activities of beta protein, we developed methods of purification to free it of associated exonuclease. Exonuclease-free beta protein appeared unable to cause the pairing of a single strand with duplex DNA; however, like Escherichia coli single strand binding protein (SSB), beta protein stimulated formation of joint molecules by recA protein from linear duplex DNA and homologous circular single strands. Like recA protein, but unlike SSB, beta protein promoted the joining of the complementary single-stranded ends of phage lambda DNA. beta protein specifically protected single-stranded DNA from digestion by pancreatic DNase. The half-time for renaturation catalyzed by beta protein was independent of DNA concentration, unlike renaturation promoted by SSB and spontaneous renaturation, which are second order reactions. Thus, beta protein resembles recA protein in its ability to bring single-stranded DNA molecules together and resembles SSB in its ability to reduce secondary structure in single-stranded DNA.
Resumo:
The thermal sensitivity and heat shock response of the different races of the mulberry silkworm Bombyx mori have been analysed. The multivoltine race, strains C. Nichi and Pure Mysore showed better survival rates than the bivoltine race, strain NB4D2 exposed to 41 degrees C and above. In general, the fifth instar larvae and the pupae exhibited maximum tolerance compared to the early larval instars, adult moths or the eggs. Exposure up to 39 degrees C for 1 or 2 h was tolerated equally whereas temperatures above 43 degrees C proved to be lethal for all. Treatment of larvae at 41 degrees C for Ih resulted in a variety of physiological alterations including increased heart beat rates, differential haemocyte counts, enlargement of granulocytes and the presence of additional protein species in the tissues and haemolymph. The appearance of a 93 kDa protein in the haemolymph, fat bodies and cuticle, following the heat shocking of larvae in vivo was a characteristic feature in all the three strains examined although the kinetics of their appearance itself was different. In haemolymph, the protein appeared immediately in response to heat shock in C. Nichi reaching the maximal levels in 2-4 h whereas its presence was noticeable only after 2-4 h recovery time in Pure Mysore and bivoltine races. The fat body from both C. Nichi and NB4D2 showed the presence of 93 kDa, 89 kDa and 70 kDa proteins on heat shock. The haemocytes, on the other hand, expressed only a 70 kDa protein consequent to heat shock. The 93 kDa protein in the haemolymph, therefore could have arisen from some other tissue, possibly the fat body. The 93 kDa protein was detected after heat shock in pupae and adult moths as well, although the presence of an additional (56 kDa) protein was also apparent in the adults. The presence of 46 kDa and 28 kDa bands in addition to the 93 kDa band in the cuticular proteins immediately following heat shock was clearly discernible. The 70 kDa band did not show much changes in the cuticular proteins on heat shock. In contrast to the changes in protein profiles seen in tissues and haemolymph following heat shock in vivo, the heat treatment of isolated fat body or haemolymph in vitro resulted in protein degradation.
Resumo:
Open reading frame (ORF) 2a of Sesbania mosaic virus (SeMV) codes for polyprotein 2a (Membrane anchor-protease-VPg-P10-P8). The C-terminal domain of SeMV polyprotein 2a was cloned, expressed and purified in order to functionally characterize it. The protein of size 8 kDa (P8) domain, like viral protein genome linked (VPg), was found to be natively unfolded and could bind to nucleic acids.Interestingly, P10-P8 but not P8 showed a novel Mg2+ dependent ATPase activity that was inhibited in the presence of poly A. In the absence of P8, the ATPase activity of the protein of size 10 kDa (P10) domain was reduced suggesting that the natively unfolded P8 domain influenced the P10 ATPase.
Resumo:
Sesbania mosaic virus (SeMV) is a ss-RNA (4149 nt) plant sobemovirus isolated from farmer's field around Tirupathi, Andhra Pradesh. The viral capsid (30 nm diameter) consists of 180 copies of protein subunits (MW 29 kDa) organized with icosahedral symmetry. In order to understand the mechanism of assembly of SeMV, a large number of deletion and substitution mutants of the coat protein (CP) were constructed. Recombinant SeMV CP (rCP) as well as the N-terminal rCP deletion mutant Delta N22 were found to assemble in E. coli into virus-like particles (VLPs). Delta N36 and Delta N65 mostly formed smaller particles consisting of 60 protein subunits. Although particlem assembly was not affected due to the substitution of aspartates (D14 and D149) that coordinate calcium ions by asparagines, the stability of the resulting capsids was drastically reduced. Deletion of residues forming a characteristic beta-annulus at the icosahedral 3-folds did not affect the assembly of VLPs. Mutation of a single tryptophan, which occurs near the icosahedral fivefold axis to glutamate or lysine, resulted in the disruption of the capsid leading to soluble dimers that resembled the quasi-dimer structure of the native virus. Replacement of positively charged residues in the amino terminal segment of CP resulted in the formation of empty shells. Based on these observations, a plausible mechanism of assembly is proposed.
Resumo:
We have demonstrated the synthesis of light-sensitive polyelectrolyte capsules (PECs) by utilizing a novel polyol reduction method and investigated its applicability as photosensitive drug delivery vehicle. The nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAN) and dextran sulfate (DS) on silica particles followed by in-situ synthesis of silver nanoparticles (NPs). Capsules without silver NPs were permeable to low molecular weight (A(w), 479 g/mol) rhodamine but impermeable to higher molecular weight fluorescence labeled dextran (FITC-dextran). However, capsules synthesized with silver NPs showed porous morphology and were permeable to higher molecular weight (M(w) 70 kDa) FITC-dextran also. These capsules were loaded with FITC-dextran using thermal encapsulation method by exploiting temperature induced shrinking of the capsules. During heat treatment the porous morphology of the capsules transformed into smooth pore free structure which prevents the movement of dextran into bulk during the loading process. When these loaded capsules are exposed to laser pulses, the capsule wall ruptured, resulting in the release of the loaded drug/dye. The rupture of the capsules was dependent on particle size, laser pulse energy and exposure time. The release was linear with time when pulse energy of 400 mu J was used and burst release was observed when pulse energy increased to 600 mu J.
Resumo:
Japanese encephalitis virus (JEV) envelope (E) protein has been shown to play a critical role in attachment to cells. However, the receptor interacting with envelope protein has not been conclusively identified. Using mouse neuroblastoma (Neuro2a) cells and purified JEV-E protein in `Virus Overlay Protein Binding Assay' followed by MALDI-TOF analysis, we identified `heat shock protein 70' (Hsp70) as a possible receptor for JEV. Indirect immunofluorescence and flow-cytometry analysis demonstrated localization of Hsp70 on Neuro2a cell surface. Co-immunoprecipitation followed by Western blot analysis reconfirmed the interaction between Hsp70 and JEV-E protein. Further, anti-Hsp70 polyclonal-antibodies were able to block JEV entry into Neuro2a cells. Additionally, using the bioinformatic tool - FTDOCK, clocking between the proteins was performed. Amongst six interacting structural poses studied one pose involving RGD motif on JEV-E and leucine(539) on Hsp70 displayed stable interaction. These observations indicate that Hsp70 serves as putative receptor for JEV in Neuro2A cells.
Resumo:
The antitumour protein from the α-endotoxin of Bacillus thuringiensis var. thuringiensis has been purified, crystallized and partially characterized. The same protein also shows the insecticidal activity. According to amino acid analysis it is an acidic protein with a molecular weight of approx. 13 000.
Resumo:
The antitumour protein from the α-endotoxin of Bacillus thuringiensis var. thuringiensis has been purified, crystallized and partially characterized. The same protein also shows the insecticidal activity. According to amino acid analysis it is an acidic protein with a molecular weight of approx. 13 000.
Resumo:
Purpose: Testis specific heat-shock protein 70-2 (HSP70-2), a member of HSP70 chaperone family, is essential for the growth of spermatocytes and cancer cells. We investigated the association of HSP70-2 expression with clinical behaviour and progression of urothelial carcinoma of bladder. Experimental design: We assessed the HSP70-2 expression by RT-PCR and HSP70-2 protein expression by immunofluorescence, flow cytometry, immunohistochemistry and Western blotting in urothelial carcinoma patient specimens and HTB-1, UMUC-3, HTB-9, HTB-2 and normal human urothelial cell lines. Further, to investigate the role of HSP70-2 in bladder tumour development, HSP70-2 was silenced in the high-grade invasive HTB-1 and UMUC-3 cells. The malignant properties of urothelial carcinoma cells were examined using colony formation, migration assay, invasion assay in vitro and tumour growth in vivo. Results: Our RT-PCR analysis and immunohistochemistry analysis revealed that HSP70-2 was expressed in both moderate to well-differentiated and high-grade invasive urothelial carcinoma cell lines studied and not in normal human urothelial cells. In consistence with these results, HSP70-2 expression was also observed in superficially invasive (70%) and muscle-invasive (90%) patient's tumours. Furthermore, HSP70-2 knockdown significantly suppressed cellular motility and invasion ability. An in vivo xenograft study showed that inhibition of HSP70-2 significantly suppressed tumour growth. Conclusions: In conclusion, our data suggest that the HSP70-2 expression is associated with early spread and progression of urothelial carcinoma of bladder cancer and that HSP70-2 can be the potential therapeutic target for bladder urothelial carcinoma. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.
Resumo:
The silk gland of Bombyx mori is a terminally differentiated tissue in which DNA replication continues without cell or nuclear division during larval development. DNA polymerase-delta activity increases in the posterior and middle silk glands during the development period, reaching maximal levels in the middle of the fifth instar larvae. The enzyme has been purified to homogeneity by a series of column chromatographic and affinity purification steps. It is a multimer comprising of three heterogeneous subunits, M(r) 170,000, 70,000, and 42,000. An auxiliary protein from B. mori silk glands, analogous to the proliferating cell nuclear antigen, enhances the processivity of the enzyme and stimulates catalytic activity by 3-fold. This auxiliary protein has also been purified to homogeneity. It is a dimer comprised of a single type M(r) 40,000 subunit. Polymerase-delta possesses an intrinsic 3' --> 5' exonuclease activity which participates in proofreading by mismatch match repair during DNA synthesis and is devoid of any primase activity. DNA polymerase-delta activity could be further distinguished from polymerase-alpha from the same tissue based on its sensitivity to various inhibitors and polyclonal antibodies to the individual enzymes. Like DNA polymerase-alpha, polymerase-delta is also tightly associated with the nuclear matrix. The polymerase alpha-primase complex could be readily separated from polymerase-delta (exonuclease) in the purification protocol adopted. DNA polymerase-delta from B. mori silk glands resembles the mammalian delta-polymerases. Considering that both DNA polymerase-delta and -alpha are present in nearly equal amounts in this highly replicative tissue and their close association with the nuclear matrix, the involvement of both the enzymes in the chromosomal endoreplication process in B. mori is strongly implicated.
Resumo:
We reported the presence of a 80 kDa polypeptide in porcine follicular fluid that inhibited the binding of 125I-radiolabelled hFSH as well as hCG to the rat ovarian gonadotropin receptors. In the present study, the biological activity of the receptor binding inhibitor is determined using an in vitro bioassay procedure. Granulosa cells isolated from PMSG primed immature rat ovaries respond to exogenously added gonadotropins in terms of progesterone production. Addition of fractions containing the gonadotropin receptor binding inhibitory activity inhibited progesterone production stimulated by the gonadotropins in a dose-dependent fashion. The receptor binding inhibitory activity was also capable of inhibiting progesterone production stimulated by PMSG, which has both FSH- and LH-like activities in rats. In contrast, progesterone production stimulated by dbcAMP was not inhibited by the receptor binding inhibitor. This result indicates that the site of action of the inhibitor is proximal to the formation of the cAMP. The above observations point out to a possible role for this factor in modulating gonadotropin activity at the ovarian level.
Resumo:
The concept of one enzyme-one activity had influenced biochemistry for over half a century. Over 1000 enzymes are now described. Many of them are highly 'specific'. Some of them are crystallized and their three-dimensional structures determined. They range from 12 to 1000 kDa in molecular weight and possess 124 to several hundreds of amino acids. They occur as single polypeptides or multiple-subunit proteins. The active sites are assembled on these by appropriate tertiary folding of the polypeptide chain, or by interaction of the constituent subunits. The substrate is held by the side-chains of a few amino acids at the active site on the surface, occupying a tiny fraction of the total area. What is the bulk of the protein behind the active site doing? Do all proteins have only one function each? Why not a protein have more than one active site on its large surface? Will we discover more than one activity for some proteins? These newer possibilities are emerging and are finding experimental support. Some proteins purified to homogeneity using assay methods for different activities are now recognized to have the same molecular weight and a high degree of homology of amino acid sequence. Obviously they are identical. They represent the phenomenon of one protein-many functions.