32 resultados para Recording and registration

em Indian Institute of Science - Bangalore - Índia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Superscalar processors currently have the potential to fetch multiple basic blocks per cycle by employing one of several recently proposed instruction fetch mechanisms. However, this increased fetch bandwidth cannot be exploited unless pipeline stages further downstream correspondingly improve. In particular,register renaming a large number of instructions per cycle is diDcult. A large instruction window, needed to receive multiple basic blocks per cycle, will slow down dependence resolution and instruction issue. This paper addresses these and related issues by proposing (i) partitioning of the instruction window into multiple blocks, each holding a dynamic code sequence; (ii) logical partitioning of the registerjle into a global file and several local jles, the latter holding registers local to a dynamic code sequence; (iii) the dynamic recording and reuse of register renaming information for registers local to a dynamic code sequence. Performance studies show these mechanisms improve performance over traditional superscalar processors by factors ranging from 1.5 to a little over 3 for the SPEC Integer programs. Next, it is observed that several of the loops in the benchmarks display vector-like behavior during execution, even if the static loop bodies are likely complex for compile-time vectorization. A dynamic loop vectorization mechanism that builds on top of the above mechanisms is briefly outlined. The mechanism vectorizes up to 60% of the dynamic instructions for some programs, albeit the average number of iterations per loop is quite small.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate both pairwise and conditional measures of Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spin valves have revolutionized the field of magnetic recording and memory devices. Spin valves are generally realized in thin film heterostructures, where two ferromagnetic (FM) layers are separated by a nonmagnetic conducting layer. Here, we demonstrate spin-valve-like magnetoresistance at room temperature in a bulk ferrimagnetic material that exhibits a magnetic shape memory effect. The origin of this unexpected behavior in Mn2NiGa has been investigated by neutron diffraction, magnetization, and ab initio theoretical calculations. The refinement of the neutron diffraction pattern shows the presence of antisite disorder where about 13% of the Ga sites are occupied by Mn atoms. On the basis of the magnetic structure obtained from neutron diffraction and theoretical calculations, we establish that these antisite defects cause the formation of FM nanoclusters with parallel alignment of Mn spin moments in a Mn2NiGa bulk lattice that has antiparallel Mn spin moments. The direction of the Mn moments in the soft FM cluster reverses with the external magnetic field. This causes a rotation or tilt in the antiparallel Mn moments at the cluster-lattice interface resulting in the observed asymmetry in magnetoresistance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of the compositional modulation at nano-scale dimensions (similar to 2-10 nm) in the enhancement of optical recording parameters in nanomultilayers, which contain Sb as active, optical absorbing and diffusing layers and As2S3 as barrier (matrix) layers was investigated. Comparison was made with single homogeneous layers made of ternary (As2S3)(x)Sb1-x glasses and co-deposited from Sb and As2S3. It was shown that essential increase of the recording efficiency, sensitivity of the bleaching process, broadening of its spectral range occurs due to the stimulated interdiffusion of adjacent components in Sb/As2S3 nanomultilayers with optimized Sb layer thickness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pulse retardation method of Breit and Tuve has been modified to record continuously the equivalent height as well as the intensity of reflections from the ionosphere. Synchronized pulses are transmitted, and the received ground pulse and the reflected pulses, after amplification and suitable distortion, are applied to the focusing cylinder of a cathode ray tube the horizontal deflecting plates of which are connected to a synchronized linear time base circuit. The pattern on the screen is composed of a bright straight line corresponding to the time base with dark gaps corresponding to the received pulses. The distance between the initial points of the gaps represents retardation while the widths of the gaps correspond to the intensity of the pulses. The pattern is photographed on a vertically moving film. One of the first few records taken at Bangalore on 4 megacycles is reproduced. It shows, among other things, that the less retarded component of magneto-ionic splitting from the F layer is present most of the time. Whenever the longer retardation component does occur, it has stronger intensity than the former. Towards the late evening hours, just before disappearing, when the F layer rises and exhibits magnetoionic splitting, the intensity of the less retarded component is extremely low compared with the other component.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to reduce the motion artifacts in DSA, non-rigid image registration is commonly used before subtracting the mask from the contrast image. Since DSA registration requires a set of spatially non-uniform control points, a conventional MRF model is not very efficient. In this paper, we introduce the concept of pivotal and non-pivotal control points to address this, and propose a non-uniform MRF for DSA registration. We use quad-trees in a novel way to generate the non-uniform grid of control points. Our MRF formulation produces a smooth displacement field and therefore results in better artifact reduction than that of registering the control points independently. We achieve improved computational performance using pivotal control points without compromising on the artifact reduction. We have tested our approach using several clinical data sets, and have presented the results of quantitative analysis, clinical assessment and performance improvement on a GPU. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low power consumption per channel and data rate minimization are two key challenges which need to be addressed in future generations of neural recording systems (NRS). Power consumption can be reduced by avoiding unnecessary processing whereas data rate is greatly decreased by sending spike time-stamps along with spike features as opposed to raw digitized data. Dynamic range in NRS can vary with time due to change in electrode-neuron distance or background noise, which demands adaptability. An analog-to-digital converter (ADC) is one of the most important blocks in a NRS. This paper presents an 8-bit SAR ADC in 0.13-mu m CMOS technology along with input and reference buffer. A novel energy efficient digital-to-analog converter switching scheme is proposed, which consumes 37% less energy than the present state-of-the-art. The use of a ping-pong input sampling scheme is emphasized for multichannel input to alleviate the bandwidth requirement of the input buffer. To reduce the data rate, the A/D process is only enabled through the in-built background noise rejection logic to ensure that the noise is not processed. The ADC resolution can be adjusted from 8 to 1 bit in 1-bit step based on the input dynamic range. The ADC consumes 8.8 mu W from 1 V supply at 1 MS/s speed. It achieves effective number of bits of 7.7 bits and FoM of 42.3 fJ/conversion-step.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a spatio-temporal registration approach for speech articulation data obtained from electromagnetic articulography (EMA) and real-time Magnetic Resonance Imaging (rtMRI). This is motivated by the potential for combining the complementary advantages of both types of data. The registration method is validated on EMA and rtMRI datasets obtained at different times, but using the same stimuli. The aligned corpus offers the advantages of high temporal resolution (from EMA) and a complete mid-sagittal view (from rtMRI). The co-registration also yields optimum placement of EMA sensors as articulatory landmarks on the magnetic resonance images, thus providing richer spatio-temporal information about articulatory dynamics. (C) 2014 Acoustical Society of America

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the problem of timing recovery for 2-D magnetic recording (TDMR) channels. We develop a timing error model for TDMR channel considering the phase and frequency offsets with noise. We propose a 2-D data-aided phase-locked loop (PLL) architecture for tracking variations in the position and movement of the read head in the down-track and cross-track directions and analyze the convergence of the algorithm under non-separable timing errors. We further develop a 2-D interpolation-based timing recovery scheme that works in conjunction with the 2-D PLL. We quantify the efficiency of our proposed algorithms by simulations over a 2-D magnetic recording channel with timing errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An indigenous electron energy loss spectrometer has been designed and fabricated for the study of free molecules. The spectrometer enables the recording of low-resolution electronic spectra of molecules inthe vapour phase with ready access to the vacuum ultraviolet region. Electron energy loss spectra of aliphatic alcohols and carbonyl compounds as wellas of benzene derivatives have been recorded with the indigenous spectrometer and the electronic transitions in these molecules discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple technique for determining the energy sensitivities for the thermographic recording of laser beams is described. The principle behind this technique is that, if a laser beam with a known spatial distribution such as a Gaussian profile is used for imaging, the radius of the thermal image formed depends uniquely on the intensity of the impinging beam. Thus by measuring the radii of the images produced for different incident beam intensities the minimum intensity necessary (that is, the threshold) for thermographic imaging is found. The diameter of the laser beam can also be found from this measurement. A simple analysis based on the temperature distribution in the laser heated material shows that there is an inverse square root dependence on pulse duration or period of exposure for the energy fluence of the laser beam required, both for the threshold and the subsequent increase in the size of the recording. It has also been shown that except for low intensity, long duration exposure on very low conductivity materials, heat losses are not very significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Achieving stabilization of telomeric DNA in G-quadruplex conformation by Various organic compounds has been an important goal for the medicinal chemists seeking to develop new anticancer agents. Several compounds are known to stabilize G-quadruplexes. However, relatively few are known to induce their formation and/or alter the topology, of the preformed quadruplex DNA. Herein, four compounds having the 1,3-phenylene-bis(piperazinyl benzimidazole) unit as a basic skeleton have been synthesized, and their interactions with the 24-mer telomeric DNA sequences from Tetrahymena thermophilia d(T(2)G(4))(4) have been investigated using high-resolution techniques Such as circular dichroism (CD) spectropolarimetry, CD melting, emission spectroscopy, and polyacrylamide gel electrophoresis. The data obtained, in the presence of one of three ions (Li+, Na+, or K+), indicate that all the new compounds have a high affinity for G-quadruplex DNA, and the strength of the binding with G-quadruplex depends on (1) phenyl ring substitution, (ii) the piperazinyl side chain, and (iii) the type of monovalent cation present in the buffer. Results further Suggest that these compounds are able to abet the conversion of the Intramolecular quadruplex into parallel stranded intermolecular G-quadruplex DNA. Notably, these compounds are also capable of inducing and stabilizing the parallel stranded quadruplex from randomly structured DNA in the absence of any stabilizing cation. The kinetics of the structural changes Induced by these compounds could be followed by recording the changes in the CD signal as a function of time. The implications of the findings mentioned above are discussed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A coaxial capacitance voltage divider with a ratio of 110 and a rise time much less than 2.5 ns was developed for use with a transmission line pulse generator capable of producing 100 kV rectangular pulses of 2 mu s duration. The low voltage arm of the divider is a 3 cm long tube of titania (TiO2) turned out from a cylindrical compact. The compact was made by first pressing titania powder using a suitable binder and then sintering at controlled temperatures. The tube was slipped over the terminating end of the pulse-forming cable to form the divider with the cable capacitance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High density Mn-Zr ferrites have been extensively used in recording head applications. The properties like permeability, los~, etc., depend on the preparation method. The :roperfies play major role in selecting these materials for various applications.In this present work., we have prepared Mn-Zn ferrites musing metal hydrazine carboxylate precursors (N2Hs)3Mn0.sZn0.sFe2(N2H3COO)3"3H20. The precursor decomposes at very low temperature (~250°C) to form ultrafine Mno.sZn0.sFe204. The partic~,e size permeability spectrum, microstructure and magnetic properties will be discussed in this paper.