41 resultados para Reactor of the fixed bed
em Indian Institute of Science - Bangalore - Índia
Resumo:
The importance of seepage in the design of channels is discussed. Experimental investigations reveal that seepage, either in the downward direction (suction) or in the upward direction (injection), can significantly change the resistance as well as the mobility of the sand-bed particles. A resistance equation relating 'particle Reynolds number' and 'shear Reynolds number' under seepage conditions is developed for plane sediment beds. Finally, a detailed design procedure of the plane sediment beds affected by seepage is presented.
Resumo:
A general model of a foam bed reactor has been developed which rigorously accounts for the extent of gas absorption with chemical reaction occurring in both the storage and foam sections. Its applicability extends to a wide spectrum of reaction velocities. The possibilities of the predominance of the bulk-liquid reaction in the storage section or the absorption with reaction in the foam section can be handled as merely special cases of the general analysis. The importance of foam for carrying out a particular gas-liquid reaction is characterised by a criterion in terms of the fractional rate of reaction in the foam section. Trends of variations in the concentrations of dissolved free A, solute B, and gas-phase A with time of operation of the reactor are presented. The nature of the variation in the fractional rate of reaction in the foam section with time, at different reaction velocities, and the effect of the liquid flow rate (across the storage section) on the transience are also illustrated. Finally, the predictions of the general model have been validated using the available experimental data on the oxidation of sodium sulphide in a foam bed reactor. The agreement between the experimental and the present theoretical information is fairly good, apart from being more insightful than all the previous models of this reactor.
Resumo:
Organo-clay was prepared by incorporating different amounts (in terms of CEC, ranging from 134-840 mg of quaternary ammonium cation (QACs) such as hexadecytrimethylammonium bromide (C19H42N]Br) into the montmorillonite clay. Prepared organo-clays are characterized by CHN analyser and XRD to measure the amount of elemental content and interlayer spacing of surfactant modified clay. The batch experiments of sorption of permanganate from aqueous media by organo-clays was studied at different acidic strengths (pH 1-7). The experimental results show that the rate and amount of adsorption of permanganate was higher at lower pH compared to raw montmorillonite. Laboratory fixed bed experiments were conducted to evaluate the breakthrough time and nature of breakthrough curves. The shape of the breakthrough curves shows that the initial cationic surfactant loadings at 1.0 CEC of the clay is enough to enter the permanganate ions in to the interlamellar region of the surfactant modified smectile clays. These fixed bed studies were also applied to quantify the effect of bed-depth and breakthrough time during the uptake of permanganate. Calculation of thermodynamic parameters shows that the sorption of permanganate is spontaneous and follows the first order kinetics.
Resumo:
In recent years new emphasis has been placed on problems of the environmental aspects of waste disposal, especially investigating alternatives to landfill, sea dumping and incineration. There is also a strong emphasis on clean, economic and efficient processes for electric power generation. These two topics may at first appear unrelated. Nevertheless, the technological advances are now such that a solution to both can be combined in a novel approach to power generation based on waste-derived fuels, including refuse-derived fuel (RDF) and sludge power (SP) by utilising a slagging gasifier and advance fuel technology (AFT). The most appropriate gasification technique for such waste utilisation is the British Gas/Lurgi (BGL) high pressure, fixed bed slagging gasifier where operation on a range of feedstocks has been well-documented. This gasifier is particularly amenable to briquette fuel feeding and, operating in an integrated gasification combined cycle mode (IGCC), is particularly advantageous. Here, the author details how this technology has been applied to Britain's first AFT-IGCC Power Station which is now under development at Fife Energy Ltd., in Scotland, the former British Gas Westfield Development Centre.
Resumo:
The paper addresses the effect of particle size on tar generation in a fixed bed gasification system. Pyrolysis, a diffusion limited process, depends on the heating rate and the surface area of the particle influencing the release of the volatile fraction leaving behind residual char. The flaming time has been estimated for different biomass samples. It is found that the flaming time for wood flakes is almost one fourth than that of coconut shells for same equivalent diameter fuel samples. The particle density of the coconut shell is more than twice that of wood spheres, and almost four times compared with wood flakes; having a significant influence on the flaming time. The ratio of the particle surface area to that of an equivalent diameter is nearly two times higher for flakes compared with wood pieces. Accounting for the density effect, on normalizing with density of the particle, the flaming rate is double in the case of wood flakes or coconut shells compared with the wood sphere for an equivalent diameter. This is due to increased surface area per unit volume of the particle. Experiments are conducted on estimation of tar content in the raw gas for wood flakes and standard wood pieces. It is observed that the tar level in the raw gas is about 80% higher in the case of wood flakes compared with wood pieces. The analysis suggests that the time for pyrolysis is lower with a higher surface area particle and is subjected to fast pyrolysis process resulting in higher tar fraction with low char yield. Increased residence time with staged air flow has a better control on residence time and lower tar in the raw gas. (C) 2014 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Resumo:
The specific objective of this paper is to develop a state space model of a tubular ammonia reactor which is the heart of an ammonia plant in a fertiliser complex. A ninth order model with three control inputs and two disturbance inputs is generated from the nonlinear distributed model using linearization and lumping approximations. The lumped model is chosen such that the steady state temperature at the exit of the catalyst bed computed from the simplified state space model is close enough to the one computed from the nonlinear steady state model. The model developed in this paper is very useful for the design of continuous/discrete versions of single variable/multivariable control algorithms.
Resumo:
In this technical note, it is established that the unassignable polynomial defined for a not strongly connected decentralized control system is not equal to Davison's fixed polynomial. This leads to a "sufficient condition" for the equality of the unassignable polynomial and Davison's fixed polynomial for strongly connected systems.
Resumo:
The transmission-line or the impedance-tube method for the measurement of the acoustic impedance of any termination involves a search for various minima and maxima of pressure. For this purpose, arrangement has to be made for the microphone to travel along the length of the impedance tube, and this complicates the design of the tube considerably. The present paper discusses a method which consists in evaluating the tube attenuation factor at any convenient frequency by making use of measured SPL's at two (or more) fixed locations with a rigid termination, calculating the tube attenuation factor and wave number at the required frequency of interest with or without mean flow (as applicable), and finally evaluating the impedance of the given termination by measuring and using SPL's at three (or more) fixed locations. Thus, the required impedance tube is considerably smaller in length, simpler in design, easier to manufacture, cheaper in cost and more convenient to use. The design of the tube is also discussed. Incidentally, it is also possible to evaluate the impedance at any low frequency without having to use a larger impedance tube.
Resumo:
Gas-phase controlled absorption of ammonia in foams made of solutions of sulphuric acid has been studied experimentally. Effects of gas-phase concentration of ammonia and type of surfactant on the performance of the foam-bed reactor are investigated. Gas-phase controlled absorption from a spherical bubble is anaylzed using the asymptotic value of Sherwood number (Sh = 6.58), for both negligible as well as significant changes in the volume of the bubble. The experimental data are shown to be in good agreement with the single-stage model of the foam-bed reactor using these asymptotic sub-models, as well as the diffusion-in-sphere analysis available in literature. Influence of effective diffusivity on the time dependence of fractional gas absorption has been found to be unimportant for foam columns with large times of contact. The asymptotic sub-models have been compared and use of the rigid-sphere asymptotic sub-model is recommended for foam columns of practical relevence.
Resumo:
Using surface charts at 0330GMT, the movement df the monsoon trough during the months June to September 1990 al two fixed longitudes, namely 79 degrees E and 85 degrees E, is studied. The probability distribution of trough position shows that the median, mean and mode occur at progressively more northern latitudes, especially at 85 degrees E, with a pronounced mode that is close to the northern-most limit reached by the trough. A spectral analysis of the fluctuating latitudinal position of the trough is carried out using FFT and the Maximum Entropy Method (MEM). Both methods show significant peaks around 7.5 and 2.6 days, and a less significant one around 40-50 days. The two peaks at the shorter period are more prominent at the eastern longitude. MEM shows an additional peak around 15 days. A study of the weather systems that occurred during the season shows them to have a duration around 3 days and an interval between systems of around 9 days, suggesting a possible correlation with the dominant short periods observed in the spectrum of trough position.
Resumo:
We study the renormalization group flows of the two terminal conductance of a superconducting junction of two Luttinger liquid wires. We compute the power laws associated with the renormalization group flow around the various fixed points of this system using the generators of the SU(4) group to generate the appropriate parametrization of an matrix representing small deviations from a given fixed point matrix [obtained earlier in S. Das, S. Rao, and A. Saha, Phys. Rev. B 77, 155418 (2008)], and we then perform a comprehensive stability analysis. In particular, for the nontrivial fixed point which has intermediate values of transmission, reflection, Andreev reflection, and crossed Andreev reflection, we show that there are eleven independent directions in which the system can be perturbed, which are relevant or irrelevant, and five directions which are marginal. We obtain power laws associated with these relevant and irrelevant perturbations. Unlike the case of the two-wire charge-conserving junction, here we show that there are power laws which are nonlinear functions of V(0) and V(2kF) [where V(k) represents the Fourier transform of the interelectron interaction potential at momentum k]. We also obtain the power law dependence of linear response conductance on voltage bias or temperature around this fixed point.
Resumo:
An input-output, frequency-domain characterization of decentralized fixed modes is given in this paper, using only standard block-diagram algebra, well-known determinantal expansions and the Binet-Cauchy formula.
Resumo:
In this paper we have used the method of characteristics developed for two dimensional unsteady flow problems to study a simplified axial turbine problem. The system consists of two sets of blades —the guiding vanes which are fixed and the rotor blades which move perpendicular to these vanes. The initial undisturbed constant flow in the system is perturbed by introducing a small velocity normal to the rotor blades to simulate a slight constant inclination. The resulting perturbed flow is periodic after the first three cycles. We have studied the perturbed density distribution throughout the system during a period.
Resumo:
For the quasi-static, Rayleigh-fading multiple-input multiple-output (MIMO) channel with n(t) transmit and n(r) receive antennas, Zheng and Tse showed that there exists a fundamental tradeoff between diversity and spatial-multiplexing gains, referred to as the diversity-multiplexing gain (D-MG) tradeoff. Subsequently, El Gamal, Caire, and Damen considered signaling across the same channel using an L-round automatic retransmission request (ARQ) protocol that assumes the presence of a noiseless feedback channel capable of conveying one bit of information per use of the feedback channel. They showed that given a fixed number L of ARQ rounds and no power control, there is a tradeoff between diversity and multiplexing gains, termed the diversity-multiplexing-delay (DMD) tradeoff. This tradeoff indicates that the diversity gain under the ARQ scheme for a particular information rate is considerably larger than that obtainable in the absence of feedback. In this paper, a set of sufficient conditions under which a space-time (ST) code will achieve the DMD tradeoff is presented. This is followed by two classes of explicit constructions of ST codes which meet these conditions. Constructions belonging to the first class achieve minimum delay and apply to a broad class of fading channels whenever n(r) >= n(t) and either L/n(t) or n(t)kslashL. The second class of constructions do not achieve minimum delay, but do achieve the DMD tradeoff of the fading channel for all statistical descriptions of the channel and for all values of the parameters n(r,) n(t,) L.