44 resultados para Radio-Base Station

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined base station association and power control problem is studied for the uplink of multichannel multicell cellular networks, in which each channel is used by exactly one cell (i.e., base station). A distributed association and power update algorithm is proposed and shown to converge to a Nash equilibrium of a noncooperative game. We consider network models with discrete mobiles (yielding an atomic congestion game), as well as a continuum of mobiles (yielding a population game). We find that the equilibria need not be Pareto efficient, nor need they be system optimal. To address the lack of system optimality, we propose pricing mechanisms. It is shown that these mechanisms can be implemented in a distributed fashion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperative transmission by base stations can significantly improve the spectral efficiency of multiuser, multi-cell multiple input multiple output systems. We show that in such systems the multiuser interference is asynchronous by nature, even when perfect timing-advance mechanisms ensure that the desired signal components arrive synchronously. We establish an accurate mathematical model for the asynchronism, and use it to show that the asynchronism leads to a significant performance degradation of existing linear preceding designs that assumed synchronous interference. We consider three different previously proposed precoding designs, and show how to modify them to effectively mitigate asynchronous interference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the question of determining locations of base stations (BSs) that may belong to the same or to competing service providers. We take into account the impact of these decisions on the behavior of intelligent mobile terminals that can connect to the base station that offers the best utility. The signal-to-interference-plus-noise ratio (SINR) is used as the quantity that determines the association. We first study the SINR association-game: We determine the cells corresponding to each base stations, i.e., the locations at which mobile terminals prefer to connect to a given base station than to others. We make some surprising observations: 1) displacing a base station a little in one direction may result in a displacement of the boundary of the corresponding cell to the opposite direction; 2) a cell corresponding to a BS may be the union of disconnected subcells. We then study the hierarchical equilibrium in the combined BS location and mobile association problem: We determine where to locate the BSs so as to maximize the revenues obtained at the induced SINR mobile association game. We consider the cases of single frequency band and two frequency bands of operation. Finally, we also consider hierarchical equilibria in two frequency systems with successive interference cancellation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a power optimization problem with average delay constraint on the downlink of a Green Base-station. A Green Base-station is powered by both renewable energy such as solar or wind energy as well as conventional sources like diesel generators or the power grid. We try to minimize the energy drawn from conventional energy sources and utilize the harvested energy to the maximum extent. Each user also has an average delay constraint for its data. The optimal action consists of scheduling the users and allocating the optimal transmission rate for the chosen user. In this paper, we formulate the problem as a Markov Decision Problem and show the existence of a stationary average-cost optimal policy. We also derive some structural results for the optimal policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, there has been an upsurge of research interest in cooperative wireless communications in both academia and industry. This article presents a simple overview of the pivotal topics in both mobile station (MS)- and base station (BS)- assisted cooperation in the context of cellular radio systems. Owing to the ever-increasing amount of literature in this particular field, this article is by no means exhaustive, but is intended to serve as a roadmap by assembling a representative sample of recent results and to stimulate further research. The emphasis is initially on relay-base cooperation, relying on network coding, followed by the design of cross-layer cooperative protocols conceived for MS cooperation and the concept of coalition network element (CNE)-assisted BS cooperation. Then, a range of complexity and backhaul traffic reduction techniques that have been proposed for BS cooperation are reviewed. A more detailed discussion is provided in the context of MS cooperation concerning the pros and cons of dispensing with high-complexity, power-hungry channel estimation. Finally, generalized design guidelines, conceived for cooperative wireless communications, are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider precoding strategies at the secondary base station (SBS) in a cognitive radio network with interference constraints at the primary users (PUs). Precoding strategies at the SBS which satisfy interference constraints at the PUs in cognitive radio networks have not been adequately addressed in the literature so far. In this paper, we consider two scenarios: i) when the primary base station (PBS) data is not available at SBS, and ii) when the PBS data is made available at the SBS. We derive the optimum MMSE and Tomlinson-Harashima precoding (THP) matrix Alters at the SBS which satisfy the interference constraints at the PUs for the former case. For the latter case, we propose a precoding scheme at the SBS which performs pre-cancellation of the PBS data, followed by THP on the pre-cancelled data. The optimum precoding matrix filters are computed through an iterative search. To illustrate the robustness of the proposed approach against imperfect CSI at the SBS, we then derive robust precoding filters under imperfect CSI for the latter case. Simulation results show that the proposed optimum precoders achieve good bit error performance at the secondary users while meeting the interference constraints at the PUs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of wireless channel allocation (whenever the channels are free) to multiple cognitive radio users in a Cognitive Radio Network (CRN) so as to satisfy their Quality of Service (QoS) requirements efficiently. The CRN base station may not know the channel states of all the users. The multiple channels are available at random times. In this setup Opportunistic Splitting can be an attractive solution. A disadvantage of this algorithm is that it requires the metrics of all users to be an independent, identically distributed sequence. However we use a recently generalized version of this algorithm in which the optimal parameters are learnt on-line through stochastic approximation and metrics can be Markov. We provide scheduling algorithms which maximize weighted-sum system throughput or are throughput or delay optimal. We also consider the scenario when some traffic streams are delay sensitive.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a single-hop data-gathering sensor network, consisting of a set of sensor nodes that transmit data periodically to a base-station. We are interested in maximizing the lifetime of this network. With our definition of network lifetime and the assumption that the radio transmission energy consumption forms the most significant portion of the total energy consumption at a sensor node, we attempt to enhance the network lifetime by reducing the transmission energy budget of sensor nodes by exploiting three system-level opportunities. We pose the problem of maximizing lifetime as a max-min optimization problem subject to the constraint of successful data collection and limited energy supply at each node. This turns out to be an extremely difficult optimization to solve. To reduce the complexity of this problem, we allow the sensor nodes and the base-station to interactively communicate with each other and employ instantaneous decoding at the base-station. The chief contribution of the paper is to show that the computational complexity of our problem is determined by the complex interplay of various system-level opportunities and challenges.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increasing network lifetime is important in wireless sensor/ad-hoc networks. In this paper, we are concerned with algorithms to increase network lifetime and amount of data delivered during the lifetime by deploying multiple mobile base stations in the sensor network field. Specifically, we allow multiple mobile base stations to be deployed along the periphery of the sensor network field and develop algorithms to dynamically choose the locations of these base stations so as to improve network lifetime. We propose energy efficient low-complexity algorithms to determine the locations of the base stations; they include i) Top-K-max algorithm, ii) maximizing the minimum residual energy (Max-Min-RE) algorithm, and iii) minimizing the residual energy difference (MinDiff-RE) algorithm. We show that the proposed base stations placement algorithms provide increased network lifetimes and amount of data delivered during the network lifetime compared to single base station scenario as well as multiple static base stations scenario, and close to those obtained by solving an integer linear program (ILP) to determine the locations of the mobile base stations. We also investigate the lifetime gain when an energy aware routing protocol is employed along with multiple base stations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A central scheduling problem in wireless communications is that of allocating resources to one of many mobile stations that have a common radio channel. Much attention has been given to the design of efficient and fair scheduling schemes that are centrally controlled by a base station (BS) whose decisions depend on the channel conditions reported by each mobile. The BS is the only entity taking decisions in this framework. The decisions are based on the reports of mobiles on their radio channel conditions. In this paper, we study the scheduling problem from a game-theoretic perspective in which some of the mobiles may be noncooperative or strategic, and may not necessarily report their true channel conditions. We model this situation as a signaling game and study its equilibria. We demonstrate that the only Perfect Bayesian Equilibria (PBE) of the signaling game are of the babbling type: the noncooperative mobiles send signals independent of their channel states, the BS simply ignores them, and allocates channels based only on the prior information on the channel statistics. We then propose various approaches to enforce truthful signaling of the radio channel conditions: a pricing approach, an approach based on some knowledge of the mobiles' policies, and an approach that replaces this knowledge by a stochastic approximations approach that combines estimation and control. We further identify other equilibria that involve non-truthful signaling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In multiuser communication on the uplink, all subscribed users may not be active simultaneously. This leads to sparsity in the activity pattern in the users' transmissions, which can be exploited in the multiuser MIMO receiver at the base station (BS). Because of no transmissions from inactive users, joint detection at the BS has to consider an augmented signal set that includes zero. In this paper, we propose a receiver that exploits this inactivity-induced sparsity and considers the zero-augmented signal set. The proposed receiver is based on Markov Chain Monte Carlo techniques. Near-optimal performance and increased system capacity (in terms of number of users in the system) are demonstrated. For example, a multiuser MIMO system with N = 32 receive antennas at the BS and an user activity factor of 0.2 supports 51 uplink users meeting a QoS of 10(-3) coded bit error rate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the problem of ``fair'' scheduling the resources to one of the many mobile stations by a centrally controlled base station (BS). The BS is the only entity taking decisions in this framework based on truthful information from the mobiles on their radio channel. We study the well-known family of parametric alpha-fair scheduling problems from a game-theoretic perspective in which some of the mobiles may be noncooperative. We first show that if the BS is unaware of the noncooperative behavior from the mobiles, the noncooperative mobiles become successful in snatching the resources from the other cooperative mobiles, resulting in unfair allocations. If the BS is aware of the noncooperative mobiles, a new game arises with BS as an additional player. It can then do better by neglecting the signals from the noncooperative mobiles. The BS, however, becomes successful in eliciting the truthful signals from the mobiles only when it uses additional information (signal statistics). This new policy along with the truthful signals from mobiles forms a Nash equilibrium (NE) that we call a Truth Revealing Equilibrium. Finally, we propose new iterative algorithms to implement fair scheduling policies that robustify the otherwise nonrobust (in presence of noncooperation) alpha-fair scheduling algorithms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spatial modulation (SM) is attractive for multiantenna wireless communications. SM uses multiple transmit antenna elements but only one transmit radio frequency (RF) chain. In SM, in addition to the information bits conveyed through conventional modulation symbols (e.g., QAM), the index of the active transmit antenna also conveys information bits. In this paper, we establish that SM has significant signal-to-noise (SNR) advantage over conventional modulation in large-scale multiuser (multiple-input multiple-output) MIMO systems. Our new contribution in this paper addresses the key issue of large-dimension signal processing at the base station (BS) receiver (e.g., signal detection) in large-scale multiuser SM-MIMO systems, where each user is equipped with multiple transmit antennas (e.g., 2 or 4 antennas) but only one transmit RF chain, and the BS is equipped with tens to hundreds of (e.g., 128) receive antennas. Specifically, we propose two novel algorithms for detection of large-scale SM-MIMO signals at the BS; one is based on message passing and the other is based on local search. The proposed algorithms achieve very good performance and scale well. For the same spectral efficiency, multiuser SM-MIMO outperforms conventional multiuser MIMO (recently being referred to as massive MIMO) by several dBs. The SNR advantage of SM-MIMO over massive MIMO can be attributed to: (i) because of the spatial index bits, SM-MIMO can use a lower-order QAM alphabet compared to that in massive MIMO to achieve the same spectral efficiency, and (ii) for the same spectral efficiency and QAM size, massive MIMO will need more spatial streams per user which leads to increased spatial interference.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Generalized spatial modulation (GSM) uses n(t) transmit antenna elements but fewer transmit radio frequency (RF) chains, n(rf). Spatial modulation (SM) and spatial multiplexing are special cases of GSM with n(rf) = 1 and n(rf) = n(t), respectively. In GSM, in addition to conveying information bits through n(rf) conventional modulation symbols (for example, QAM), the indices of the n(rf) active transmit antennas also convey information bits. In this paper, we investigate GSM for large-scale multiuser MIMO communications on the uplink. Our contributions in this paper include: 1) an average bit error probability (ABEP) analysis for maximum-likelihood detection in multiuser GSM-MIMO on the uplink, where we derive an upper bound on the ABEP, and 2) low-complexity algorithms for GSM-MIMO signal detection and channel estimation at the base station receiver based on message passing. The analytical upper bounds on the ABEP are found to be tight at moderate to high signal-to-noise ratios (SNR). The proposed receiver algorithms are found to scale very well in complexity while achieving near-optimal performance in large dimensions. Simulation results show that, for the same spectral efficiency, multiuser GSM-MIMO can outperform multiuser SM-MIMO as well as conventional multiuser MIMO, by about 2 to 9 dB at a bit error rate of 10(-3). Such SNR gains in GSM-MIMO compared to SM-MIMO and conventional MIMO can be attributed to the fact that, because of a larger number of spatial index bits, GSM-MIMO can use a lower-order QAM alphabet which is more power efficient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The WiFiRe (WiFi Rural Extension) proposal for rural broadband access is being developed under the aegis of CEWIT. The system leverages the widely available, and highly cost-reduced, WiFi chipsets. However, only the physical layer from these chipsets is retained. A single base station carries several WiFi transceivers, each serving one sector of the cell, and all operating on the same WiFi channel in a time division duplex (TDD) manner. We replace the contention based WiFi MAC with a single-channel TDD multisector TDM MAC similar to the WiMax MAC. In this paper we discuss in detail the issues in designing such a MAC for the purpose of carrying packet voice telephony and for Internet access. The problem of determining the optimal spatial reuse is formulated and the optimal spatial reuse and the corresponding cell size is derived. Then the voice and data scheduler is designed. It is shown how throughput fairness can be implemented in the data scheduler. A capacity assessment of the system is also provided.