14 resultados para Project Independence.
em Indian Institute of Science - Bangalore - Índia
Resumo:
The demand for tunnelling and underground space creation is rapidly growing due to the requirement of civil infrastructure projects and urbanisation. Blasting remains the most inexpensive method of underground excavations in hard rock. Unfortunately, there are no specific safety guidelines available for the blasted tunnels with regards to the threshold limits of vibrations caused by repeated blasting activity in the close proximity. This paper presents the results of a comprehensive study conducted to find out the effect of repeated blast loading on the damage experienced by jointed basaltic rock mass during tunnelling works. Conducting of multiple rounds of blasts for various civil excavations in a railway tunnel imparted repeated loading on rock mass of sidewall and roof of the tunnel. The blast induced damage was assessed by using vibration attenuation equations of charge weight scaling law and measured by borehole extensometers and borehole camera. Ground vibrations of each blasting round were also monitored by triaxial geophones installed near the borehole extensometers. The peak particle velocity (V-max) observations and plastic deformations from borehole extensometers were used to develop a site specific damage model. The study reveals that repeated dynamic loading imparted on the exposed tunnel from subsequent blasts, in the vicinity, resulted in rock mass damage at lesser vibration levels than the critical peak particle velocity (V-cr). It was found that, the repeated blast loading resulted in the near-field damage due to high frequency waves and far-field damage due to low frequency waves. The far field damage, after 45-50 occurrences of blast loading, was up to 55% of the near-field damage in basaltic rock mass. The findings of the study clearly indicate that the phenomena of repeated blasting with respect to number of cycles of loading should be taken into consideration for proper assessment of blast induced damage in underground excavations.
Resumo:
The steady-state kinetic constants for the catalysis of CO2 hydration by the sulfonamide-resistant and testosterone-induced carbonic anhydrase from the liver of the male rat has been determined by stopped-flow spectrophotometry. The turnover number was 2.6 ± 0.6 × 103 s− at 25 °C, and was invariant with pH ranging from 6.2 to 8.2 within experimental error. The Km at 25 °C was 5 ± 1 mImage , and was also pH independent. These data are in quantitative agreement with earlier findings of pH-independent CO2 hydration activity for the mammalian skeletal muscle carbonic anhydrase isozyme III. The turnover numbers for higher-activity isozymes I and II are strongly pH dependent in this pH range. Thus, the kinetic status of the male rat liver enzyme is that of carbonic anhydrase III. This finding is consistent with preliminary structural and immunologic data from other laboratories.
Resumo:
An integrated approach to energy planning, when applied to large hydroelectric projects, requires that the energy-opportunity cost of the land submerged under the reservoir be incorporated into the planning methodology. Biomass energy lost from the submerged land has to be compared to the electrical energy generated, for which we develop four alternative formulations of the net-energy function. The design problem is posed as an LP problem and is solved for two sites in India. Our results show that the proposed designs may not be viable in net-energy terms, whereas a marginal reduction in the generation capacity could lead to an optimal design that gives substantial savings in the submerged area. Allowing seasonal variations in the hydroelectric generation capacity also reduces the reservoir size. A mixed hydro-wood generation system is then examined and is found to be viable.
Resumo:
It is shown, in the composite fermion models studied by 't Hooft and others, that the requirements of Adler-Bell-Jackiw anomaly matching and n-independence are sufficient to fix the indices of composite representations. The third requirement, namely that of decoupling relations, follows from these two constraints in such models and hence is inessential.
Resumo:
Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.
Resumo:
Submergence of land is a major impact of large hydropower projects. Such projects are often also dogged by siltation, delays in construction and heavy debt burdens-factors that are not considered in the project planning exercise. A simple constrained optimization model for the benefit~ost analysis of large hydropower projects that considers these features is proposed. The model is then applied to two sites in India. Using the potential productivity of an energy plantation on the submergible land is suggested as a reasonable approach to estimating the opportunity cost of submergence. Optimum project dimensions are calculated for various scenarios. Results indicate that the inclusion of submergence cost may lead to a substanual reduction in net present value and hence in project viability. Parameters such as project lifespan, con$truction time, discount rate and external debt burden are also of significance. The designs proposed by the planners are found to be uneconomic, whIle even the optimal design may not be viable for more typical scenarios. The concept of energy opportunity cost is useful for preliminary screening; some projects may require more detailed calculations. The optimization approach helps identify significant trade-offs between energy generation and land availability.
Resumo:
The nucleotide sequence of cosmid B1790, carrying the Rif-Str regions of the Mycobacterium leprae chromosome, has been determined. Twelve open reading frames were identified in the 36716bp sequence, representing 40% of the coding capacity. Five ribosomal proteins, two elongation factors and the β and β'subunits of RNA polymerase have been characterized and two novel genes were found. One of these encodes a member of the so-called ABC family of ATP-binding proteins while the other appears to encode an enzyme involved in repairing genomic lesions caused by free radicals. This finding may well be significant as M. leprae, an intracellular pathogen, lives within macrophages.
Resumo:
Management of large projects, especially the ones in which a major component of R&D is involved and those requiring knowledge from diverse specialised and sophisticated fields, may be classified as semi-structured problems. In these problems, there is some knowledge about the nature of the work involved, but there are also uncertainties associated with emerging technologies. In order to draw up a plan and schedule of activities of such a large and complex project, the project manager is faced with a host of complex decisions that he has to take, such as, when to start an activity, for how long the activity is likely to continue, etc. An Intelligent Decision Support System (IDSS) which aids the manager in decision making and drawing up a feasible schedule of activities while taking into consideration the constraints of resources and time, will have a considerable impact on the efficient management of the project. This report discusses the design of an IDSS that helps in project planning phase through the scheduling phase. The IDSS uses a new project scheduling tool, the Project Influence Graph (PIG).
Resumo:
Two new statistics, namely Delta(chi 2) and Delta(chi), based on the extreme value theory, were derived by Gupta et al. We use these statistics to study the direction dependence in the HST Key Project data, which provides one of the most precise measurements of the Hubble constant. We also study the non-Gaussianity in this data set using these statistics. Our results for Delta(chi 2) show that the significance of direction-dependent systematics is restricted to well below the 1 sigma confidence limit; however, the presence of non-Gaussian features is subtle. On the other hand, the Delta(chi). statistic, which is more sensitive to direction dependence, shows direction dependence systematics to be at a slightly higher confidence level, and the presence of non-Gaussian features at a level similar to the Delta(chi 2) statistic.
Resumo:
The goal of this work is to reduce the cost of computing the coefficients in the Karhunen-Loeve (KL) expansion. The KL expansion serves as a useful and efficient tool for discretizing second-order stochastic processes with known covariance function. Its applications in engineering mechanics include discretizing random field models for elastic moduli, fluid properties, and structural response. The main computational cost of finding the coefficients of this expansion arises from numerically solving an integral eigenvalue problem with the covariance function as the integration kernel. Mathematically this is a homogeneous Fredholm equation of second type. One widely used method for solving this integral eigenvalue problem is to use finite element (FE) bases for discretizing the eigenfunctions, followed by a Galerkin projection. This method is computationally expensive. In the current work it is first shown that the shape of the physical domain in a random field does not affect the realizations of the field estimated using KL expansion, although the individual KL terms are affected. Based on this domain independence property, a numerical integration based scheme accompanied by a modification of the domain, is proposed. In addition to presenting mathematical arguments to establish the domain independence, numerical studies are also conducted to demonstrate and test the proposed method. Numerically it is demonstrated that compared to the Galerkin method the computational speed gain in the proposed method is of three to four orders of magnitude for a two dimensional example, and of one to two orders of magnitude for a three dimensional example, while retaining the same level of accuracy. It is also shown that for separable covariance kernels a further cost reduction of three to four orders of magnitude can be achieved. Both normal and lognormal fields are considered in the numerical studies. (c) 2014 Elsevier B.V. All rights reserved.