99 resultados para Predictive Monitoring
em Indian Institute of Science - Bangalore - Índia
Resumo:
A nonlinear suboptimal guidance scheme is developed for the reentry phase of the reusable launch vehicles. A recently developed methodology, named as model predictive static programming (MPSP), is implemented which combines the philosophies of nonlinear model predictive control theory and approximate dynamic programming. This technique provides a finite time nonlinear suboptimal guidance law which leads to a rapid solution of the guidance history update. It does not have to suffer from computational difficulties and can be implemented online. The system dynamics is propagated through the flight corridor to the end of the reentry phase considering energy as independent variable and angle of attack as the active control variable. All the terminal constraints are satisfied. Among the path constraints, the normal load is found to be very constrictive. Hence, an extra effort has been made to keep the normal load within a specified limit and monitoring its sensitivity to the perturbation.
Resumo:
Combining the philosophies of nonlinear model predictive control and approximate dynamic programming, a new suboptimal control design technique is presented in this paper, named as model predictive static programming (MPSP), which is applicable for finite-horizon nonlinear problems with terminal constraints. This technique is computationally efficient, and hence, can possibly be implemented online. The effectiveness of the proposed method is demonstrated by designing an ascent phase guidance scheme for a ballistic missile propelled by solid motors. A comparison study with a conventional gradient method shows that the MPSP solution is quite close to the optimal solution.
Resumo:
This paper presents a new approach for assessing power system voltage stability based on artificial feed forward neural network (FFNN). The approach uses real and reactive power, as well as voltage vectors for generators and load buses to train the neural net (NN). The input properties of the NN are generated from offline training data with various simulated loading conditions using a conventional voltage stability algorithm based on the L-index. The performance of the trained NN is investigated on two systems under various voltage stability assessment conditions. Main advantage is that the proposed approach is fast, robust, accurate and can be used online for predicting the L-indices of all the power system buses simultaneously. The method can also be effectively used to determining local and global stability margin for further improvement measures.
Resumo:
Time reversal active sensing using Lamb waves is investigated for health monitoring of a metallic structure. Experiments were conducted on an aluminum plate to study the time reversal behavior of A(0) and S-0 Lamb wave modes under narrow band and broad band pulse excitation. Damage in the form of a notch was introduced in the plate to study the changes in the characteristics of the time reversed Lamb wave modes experimentally. Time-frequency analysis of the time reversed signal was carried out to extract the damage information. A measure of damage based on wavelet transform was derived to quantify the hidden damage information in the time reversed signal. It has been shown that time reversal can be used to achieve temporal recompression of Lamb waves under broadband signal excitation. Further, the broad band excitation can also improve the resolution of the technique in detecting closely located defects. This is demonstrated by picking up the reflection of waves from the edge of the plate, from a defect close to the edge of the plate and from defects located near to each other. This study shows the effectiveness of Lamb wave time reversal for temporal recompression of dispersive Lamb waves for damage detection in health monitoring applications. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.
Resumo:
A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.
Resumo:
Recent advances in structural integrity evaluation have led to the development. of PZT wafer sensors (PWAS) which can be embedded or surface mounted for both acoustic emission (AE) and ultrasonic (UT) modes, which forms an integrated approach for Structural Health Monitoring (SHM) of aerospace structures. For the fabrication of PWAS wafers, soft PZT formulation (SP-5H Grade containing dopants like BA, SM, CA, ZN, Y and HF) were used. The piezoelectric charge constant (d(33)) was measured by a d(33) meter. As a first step towards the final objective of developing Health monitoring methods with embedded PWAS, experiments were conducted on aluminum and composite plates of finite dimensions using PWAS sensors. The AE source was simulated by breaking 0.5mm pencil lead on the surface of a thin plate. Experiments were also conducted with surface mounted PZT films and conventional AE sensors in order to establish the sensitivity of PWAS. A comparison of results of theoretical and experimental work shows good agreement.
Resumo:
In this paper, we are concerned with energy efficient area monitoring using information coverage in wireless sensor networks, where collaboration among multiple sensors can enable accurate sensing of a point in a given area-to-monitor even if that point falls outside the physical coverage of all the sensors. We refer to any set of sensors that can collectively sense all points in the entire area-to-monitor as a full area information cover. We first propose a low-complexity heuristic algorithm to obtain full area information covers. Using these covers, we then obtain the optimum schedule for activating the sensing activity of various sensors that maximizes the sensing lifetime. The scheduling of sensor activity using the optimum schedules obtained using the proposed algorithm is shown to achieve significantly longer sensing lifetimes compared to those achieved using physical coverage. Relaxing the full area coverage requirement to a partial area coverage (e.g., 95% of area coverage as adequate instead of 100% area coverage) further enhances the lifetime.
Resumo:
Power system disturbances are often caused by faults on transmission lines. When faults occur in a power system, the protective relays detect the fault and initiate tripping of appropriate circuit breakers, which isolate the affected part from the rest of the power system. Generally Extra High Voltage (EHV) transmission substations in power systems are connected with multiple transmission lines to neighboring substations. In some cases mal-operation of relays can happen under varying operating conditions, because of inappropriate coordination of relay settings. Due to these actions the power system margins for contingencies are decreasing. Hence, power system protective relaying reliability becomes increasingly important. In this paper an approach is presented using Support Vector Machine (SVM) as an intelligent tool for identifying the faulted line that is emanating from a substation and finding the distance from the substation. Results on 24-bus equivalent EHV system, part of Indian southern grid, are presented for illustration purpose. This approach is particularly important to avoid mal-operation of relays following a disturbance in the neighboring line connected to the same substation and assuring secure operation of the power systems.
Resumo:
In this paper we show the applicability of Ant Colony Optimisation (ACO) techniques for pattern classification problem that arises in tool wear monitoring. In an earlier study, artificial neural networks and genetic programming have been successfully applied to tool wear monitoring problem. ACO is a recent addition to evolutionary computation technique that has gained attention for its ability to extract the underlying data relationships and express them in form of simple rules. Rules are extracted for data classification using training set of data points. These rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in ACO based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The classification accuracy obtained in ACO based approach is as good as obtained in other biologically inspired techniques.
Resumo:
During the course of genome studies in a rural community in the South Indian state of Karnataka, DNA-based investigations and counselling for familial adenomatous polyposis (FAP) were requested via the community physician. The proposita died in 1940 and FAP had been clinically diagnosed in 2 of her 5 children, both deceased. DNA samples from 2 affected individuals in the third generation were screened for mutations in the APC gene, and a frame-shift mutation was identified in exon 15 with a common deletion at codon 1061. Predictive testing for the mutation was then organized on a voluntary basis. There were 11 positive tests, including confirmatory positives on 2 persons diagnosed by colonoscopy, and to date surgery has been successfully undertaken on 3 previously undiagnosed adults. The ongoing success of the study indicates that, with appropriate access to the facilities offered by collaborating centres, predictive testing is feasible for diseases such as FAP and could be of significant benefit to communities in economically less developed countries.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.
Resumo:
Fallibility is inherent in human cognition and so a system that will monitor performance is indispensable. While behavioral evidence for such a system derives from the finding that subjects slow down after trials that are likely to produce errors, the neural and behavioral characterization that enables such control is incomplete. Here, we report a specific role for dopamine/basal ganglia in response conflict by accessing deficits in performance monitoring in patients with Parkinson's disease. To characterize such a deficit, we used a modification of the oculomotor countermanding task to show that slowing down of responses that generate robust response conflict, and not post-error per se, is deficient in Parkinson's disease patients. Poor performance adjustment could be either due to impaired ability to slow RT subsequent to conflicts or due to impaired response conflict recognition. If the latter hypothesis was true, then PD subjects should show evidence of impaired error detection/correction, which was found to be the case. These results make a strong case for impaired performance monitoring in Parkinson's patients.