52 resultados para Phonon Density of States

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the tunneling density of states (TDOS) for a junction of three Tomonaga-Luttinger liquid wires. We show that there are fixed points which allow for the enhancement of the TDOS, which is unusual for Luttinger liquids. The distance from the junction over which this enhancement occurs is of the order of x=v/(2 omega), where v is the plasmon velocity and omega is the bias frequency. Beyond this distance, the TDOS crosses over to the standard bulk value independent of the fixed point describing the junction. This finite range of distances opens up the possibility of experimentally probing the enhancement in each wire individually.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With high-resolution photoemission spectroscopy measurements, the density of states (DOS) near the Fermi level (E-F) of double perovskite Sr2FeMoO6 having different degrees of Fe/Mo antisite disorder has been investigated with varying temperature. The DOS near E-F showed a systematic depletion with increasing degree of disorder, and recovered with increasing temperature. Altshuler-Aronov (AA) theory of disordered metals well explains the dependences of the experimental results. Scaling analysis of the spectra provides experimental indication for the functional form of the AA DOS singularity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study graphene, which has both spin-orbit coupling (SOC), taken to be of the Kane-Mele form, and a Zeeman field induced due to proximity to a ferromagnetic material. We show that a zigzag interface of graphene having SOC with its pristine counterpart hosts robust chiral edge modes in spite of the gapless nature of the pristine graphene; such modes do not occur for armchair interfaces. Next we study the change in the local density of states (LDOS) due to the presence of an impurity in graphene with SOC and Zeeman field, and demonstrate that the Fourier transform of the LDOS close to the Dirac points can act as a measure of the strength of the spin-orbit coupling; in addition, for a specific distribution of impurity atoms, the LDOS is controlled by a destructive interference effect of graphene electrons which is a direct consequence of their Dirac nature. Finally, we study transport across junctions, which separates spin-orbit coupled graphene with Kane-Mele and Rashba terms from pristine graphene both in the presence and absence of a Zeeman field. We demonstrate that such junctions are generally spin active, namely, they can rotate the spin so that an incident electron that is spin polarized along some direction has a finite probability of being transmitted with the opposite spin. This leads to a finite, electrically controllable, spin current in such graphene junctions. We discuss possible experiments that can probe our theoretical predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators. (C) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simultaneous state and parameter estimation problem for a linear discrete-time system with unknown noise statistics is treated as a large-scale optimization problem. The a posterioriprobability density function is maximized directly with respect to the states and parameters subject to the constraint of the system dynamics. The resulting optimization problem is too large for any of the standard non-linear programming techniques and hence an hierarchical optimization approach is proposed. It turns out that the states can be computed at the first levelfor given noise and system parameters. These, in turn, are to be modified at the second level.The states are to be computed from a large system of linear equations and two solution methods are considered for solving these equations, limiting the horizon to a suitable length. The resulting algorithm is a filter-smoother, suitable for off-line as well as on-line state estimation for given noise and system parameters. The second level problem is split up into two, one for modifying the noise statistics and the other for modifying the system parameters. An adaptive relaxation technique is proposed for modifying the noise statistics and a modified Gauss-Newton technique is used to adjust the system parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present first-principles density-functional-theory-based calculations to determine the effects of the strength of on-site electron correlation, magnetic ordering, pressure and Se vacancies on phonon frequencies and electronic structure of FeSe1-x. The theoretical equilibrium structure (lattice parameters) of FeSe depends sensitively on the value of the Hubbard parameter U of on-site correlation and magnetic ordering. Our results suggest that there is a competition between different antiferromagnetic states due to comparable magnetic exchange couplings between first- and second-neighbor Fe sites. As a result, a short range order of stripe antiferromagnetic type is shown to be relevant to the normal state of FeSe at low temperature. We show that there is a strong spin-phonon coupling in FeSe (comparable to its superconducting transition temperature) as reflected in large changes in the frequencies of certain phonons with different magnetic ordering, which is used to explain the observed hardening of a Raman-active phonon at temperatures (similar to 100 K) where magnetic ordering sets in. The symmetry of the stripe antiferromagnetic phase permits an induced stress with orthorhombic symmetry, leading to orthorhombic strain as a secondary order parameter at the temperature of magnetic ordering. The presence of Se vacancies in FeSe gives rise to a large peak in the density of states near the Fermi energy, which could enhance the superconducting transition temperature within the BCS-like picture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a simplified theory of carrier backscattering coefficient in a twofold degenerate asymmetric bilayer graphene nanoribbon (BGN) under the application of a low static electric field. We show that for a highly asymmetric BGN(Delta = gamma), the density of states in the lower subband increases more that of the upper, in which Delta and gamma are the gap and the interlayer coupling constant, respectively. We also demonstrate that under the acoustic phonon scattering regime, the formation of two distinct sets of energy subbands signatures a quantized transmission coefficient as a function of ribbon width and provides an extremely low carrier reflection coefficient for a better Landauer conductance even at room temperature. The well-known result for the ballistic condition has been obtained as a special case of the present analysis under certain limiting conditions which forms an indirect validation of our theoretical formalism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypyrrole (PPy) has been synthesized electrochemically on platinum substrate by varying synthesis temperature and dopant concentration. The charge transport in PPy has been investigated as a function of temperature for both in-plane and out-of-plane geometry in a wide temperature range of 5K-300 K. The charge transport showed strong anisotropy and various mechanisms were used to explain the transport. The conductivity ratio, sigma(r) = sigma(300 K)/sigma(5 K) is calculated for each sample to quantify the relative disorder. At all the temperatures, the conductivity values for in-plane transport are found to be more for PPy synthesized at lower temperature, while the behavior is found to be different for out-of-plane transport. The carrier density is found to play a crucial role in case of in-plane transport. An effort has been made to correlate charge transport to morphology by analyzing temperature and frequency dependence of conductivity. Charge transport in lateral direction is found to be dominated by hopping whereas tunneling mechanisms are dominated in vertical direction. Parameters such as density of states at the Fermi level N(E-F)], average hopping distance (R), and average hopping energy (W) have been estimated for each samples in both geometry. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775405]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We employ an exact solution of the simplest model for pump-probe time-resolved photoemission spectroscopy in charge-density-wave systems to show how, in nonequilibrium, the gap in the density of states disappears while the charge density remains modulated, and then the gap reforms after the pulse has passed. This nonequilibrium scenario qualitatively describes the common short-time experimental features in TaS2 and TbTe3, indicating a quasiuniversality for nonequilibrium ``melting'' with qualitative features that can be easily understood within a simple picture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Towards ultrafast optoelectronic applications of single and a few layer reduced graphene oxide (RGO), we study time domain terahertz spectroscopy and optical pump induced changes in terahertz conductivity of self-supported RGO membrane in the spectral window of 0.5-3.5 THz. The real and imaginary parts of conductivity spectra clearly reveal low frequency resonances, attributed to the energy gaps due to the van Hove singularities in the density of states flanking the Dirac points arising due to the relative rotation of the graphene layers. Further, optical pump induced terahertz conductivity is positive, pointing to the dominance of intraband scattering processes. The relaxation dynamics of the photo-excited carriers consists of three cooling pathways: the faster (similar to 450 fs) one due to optical phonon emission followed by disorder mediated large momentum and large energy acoustic phonon emission with a time constant of a few ps (called the super-collision mechanism) and a very large time (similar to 100 ps) arising from the deep trap states. The frequency dependence of the dynamic conductivity at different delay times is analyzed in term of Drude-Smith model. (C) 2014 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature dependent acoustic phonon behavior of PbWO4 and BaWO4 using Brillouin spectroscopy has been explained for the first time. Low temperature Brillouin studies on PbWO4 and BaWO4 have been carried out from 320-20 K. In PbWO4, we observe a change in acoustic phonon mode behavior around 180 K. But in the case of BaWO4, we have observed two types of change in acoustic phonon mode behavior at 240 K and 130 K. The change in Brillouin shift omega and the slope d omega/dT are the order parameter for all kinds of phase transitions. Since we do not see hysteresis on acoustic phonon mode behavior in the reverse temperature experiments, these second order phase transitions are no related to structural phase change and could be related to acoustic phonon coupled electronic transitions. In PbWO4 he temperature driven phase transition at 180 K could be due to changes in he environment around he lead vacancy (V-pb(2-)) changes the electronic states. In the case of BaWO4, the phase transition at 240 K shows he decrease in penetration depth of WO3 impurity. So it becomes more metallic. The transition at 130 K could be he same electronic transitions as that of PbWO4 as function of temperature. The sound velocity and elastic moduli of BaWO4 shows that it could be the prominent material for acousto-optic device applications. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 angstrom from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 mu(B) due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition-metal oxides at the metal-insulator boundary, especially those belonging to the perovskite family, exhibit fascinating phenomena such as insulator-metal transitions controlled by composition, high-temperature superconductivity and giant magnetoresistance (GMR), Interestingly, many of these marginally metallic oxides obey the established criteria for metallicity and have a finite density of states at the Fermi;level. The perovskite manganates exhibiting GMR, on the other hand, are unusual in that they possess very high resistivities in the 'metallic' state and show no significant density of states at the Fermi level, Marginal metallicity in oxide systems is a problem of great complexity and contemporary interest and its understanding is of crucial significance to the diverse phenomena exhibited by these materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report results of molecular dynamics investigations into neutral impurity diffusing within an amorphous solid as a function of the size of the diffusant and density of the host amorphous matrix. We find that self diffusivity exhibits an anomalous maximum as a function of the size of the impurity species. An analysis of properties of the impurity atom with maximum diffusivity shows that it is associated with lower mean square force, reduced backscattering of velocity autocorrelation function, near-exponential decay of the intermediate scattering function (as compared to stretched-exponential decay for other sizes of the impurity species) and lower activation energy. These results demonstrate the existence of size-dependent diffusivity maximum in disordered solids. Further, we show that the diffusivity maximum is observed at lower impurity diameters with increase in density. This is explained in terms of the Levitation parameter and the void structure of the amorphous solid. We demonstrate that these results imply contrasting dependence of self diffusivity (D) on the density of the amorphous matrix, p. D increases with p for small sizes of the impurity but shows an increase followed by a decrease for intermediate sizes of the impurity atom. For large sizes of the impurity atom, D decreases with increase in p. These contrasting dependence arises naturally from the existence of Levitation Effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we theoretically examine recent pump/probe photoemission experiments on the strongly correlated charge-density-wave insulator TaS2.We describe the general nonequilibrium many-body formulation of time-resolved photoemission in the sudden approximation, and then solve the problem using dynamical mean-field theory with the numerical renormalization group and a bare density of states calculated from density functional theory including the charge-density-wave distortion of the ion cores and spin-orbit coupling. We find a number of interesting results: (i) the bare band structure actually has more dispersion in the perpendicular direction than in the two-dimensional planes; (ii) the DMFT approach can produce upper and lower Hubbard bands that resemble those in the experiment, but the upper bands will overlap in energy with other higher energy bands; (iii) the effect of the finite width of the probe pulse is minimal on the shape of the photoemission spectra; and (iv) the quasiequilibrium approximation does not fully describe the behavior in this system.